Search results
1 – 4 of 4Paolo Di Barba, Fabrizio Dughiero, Michele Forzan and Maria Evelina Mognaschi
Manuele Bertoluzzo, Paolo Di Barba, Michele Forzan, Maria Evelina Mognaschi and Elisabetta Sieni
The purpose of the study is to design the compensation network of a dynamic wireless power transfer system, considering the movement of the receiving coil along an electrified…
Abstract
Purpose
The purpose of the study is to design the compensation network of a dynamic wireless power transfer system, considering the movement of the receiving coil along an electrified track with a large number of inductors buried on the road.
Design/methodology/approach
A finite element model has been developed to calculate the self-inductances of transmitting and receiving coils as well as the mutual inductances between the receiving coil and the transmitting ones in the nearby and for various relative positions. The calculated lumped parameters, self-inductances and mutual inductances depending on the relative positions between the coils, have been considered to design the compensation network of the active coils, which is composed of three capacitive or inductive reactances connected in the T form. The optimal values of the six reactances, three for the transmitting coils and three for the receiving one, have been calculated by resorting to the Genetic Algorithm NSGA-II.
Findings
In this paper, the results obtained by means of the optimizations have broadly discussed. The optimal values of the reactances of the compensation networks show a clear trend in the receiving part of the circuit. On the other hand, the problem seems very sensitive to the values of the reactances in the transmitting circuit.
Originality/value
Dynamic wireless power transfer system is one of the newest ways of recharging electric vehicles. Hence, the design of compensation networks for this kind of systems is a new topic, and there is the need to investigate possible solutions to obtain a good performance of the recharging system.
Details
Keywords
Piergiorgio Alotto, Paolo Di Barba, Alessandro Formisano, Gabriele Maria Lozito, Raffaele Martone, Maria Evelina Mognaschi, Maurizio Repetto, Alessandro Salvini and Antonio Savini
Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or system data from measured effects, are usually ill-posed or, in the numerical…
Abstract
Purpose
Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or system data from measured effects, are usually ill-posed or, in the numerical formulation, ill-conditioned and require suitable regularization to provide meaningful results. To test new regularization methods, there is the need of benchmark problems, which numerical properties and solutions should be well known. Hence, this study aims to define a benchmark problem, suitable to test new regularization approaches and solves with different methods.
Design/methodology/approach
To assess reliability and performance of different solving strategies for inverse source problems, a benchmark problem of current synthesis is defined and solved by means of several regularization methods in a comparative way; subsequently, an approach in terms of an artificial neural network (ANN) is considered as a viable alternative to classical regularization schemes. The solution of the underlying forward problem is based on a finite element analysis.
Findings
The paper provides a very detailed analysis of the proposed inverse problem in terms of numerical properties of the lead field matrix. The solutions found by different regularization approaches and an ANN method are provided, showing the performance of the applied methods and the numerical issues of the benchmark problem.
Originality/value
The value of the paper is to provide the numerical characteristics and issues of the proposed benchmark problem in a comprehensive way, by means of a wide variety of regularization methods and an ANN approach.
Details