Search results
1 – 6 of 6Xia He, Lin Zhong, Guorong Wang, Yang Liao and Qingyou Liu
This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the…
Abstract
Purpose
This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the lifetime and working performance of rock bit sliding bearing under high temperature and heavy load conditions.
Design/methodology/approach
Surface textures on beryllium bronze specimen were fabricated by femtosecond laser ablation (800 nm wavelength, 40 fs pulse duration, 1 kHz pulse repetition frequency), and then the tribological behaviors of pin-on-disc configuration of rock bit bearing were performed with 20CrNiMo/beryllium bronze tribo-pairs under non-Newtonian lubrication of rock bit grease.
Findings
The results showed that the surface texture on beryllium bronze specimens with specific geometrical features can be achieved by optimizing femtosecond laser processing via adjusting laser peak power and exposure time; more than 52 per cent of friction reduction was obtained from surface texture with a depth-to-diameter ratio of 0.165 and area ratio of 5 per cent at a shear rate of 1301 s−1 under the heavy load of 20 MPa and high temperature of 120°C, and the lubrication regime of rock bit bearing unit tribo-pairs was improved from boundary to mixed lubrication, which indicated that femtosecond laser ablation technique showed great potential in promoting service life and working performance of rock bit bearing.
Originality/value
Femtosecond laser-irradiated surface texture has the potential possibility for application in rock bit sliding bearing to improve the lubrication performance. Because proper micro dimples showed good lubrication and wear resistance performance for unit tribo-pairs of rock bit sliding bearing under high temperature, heavy load and non-Newtonian lubrication conditions, which is very important to improve the efficiency of breaking rock and accelerate the development of deep-water oil and gas resources.
Details
Keywords
Lorenzo Fiorineschi, Luca Pugi and Federico Rotini
The purpose of this paper is to present an alternative solution for press-fit technology processes, which could improve the precision of the positioning movements and the…
Abstract
Purpose
The purpose of this paper is to present an alternative solution for press-fit technology processes, which could improve the precision of the positioning movements and the stiffness of the structural elements.
Design/methodology/approach
A concept is presented and the related kinematics is described. Then, preliminary embodiment evaluations have been performed in terms of kinematics, force control and load distribution on the main structural elements.
Findings
Thanks to the additional leg, the proposed solution allows a preload that is capable of compensating the backlash of joints. The particular structure with four extendible legs and eight cardan joints ensures the parallelism between the ground and the plate holding the end effector, without any need of additional controls. However, it implies that the legs are not subjected to pure tension–compression stresses.
Research limitations/implications
This work is focused on the conceptual phase of the design process, with only preliminary embodiment analysis that paves the way for subsequent and more detailed design steps. Especially concerning the actual stiffness of the system, comprehensive evaluations could be performed only after the identification of the particular parts/devices used to implement the main functional elements.
Originality/value
To the best of the authors’ knowledge, this is the first research work that comprehensively describes and analyzes the considered kinematics, within a real industrial application context.
Details
Keywords
Tuomas Riipinen, Sini Metsä-Kortelainen, Tomi Lindroos, Janne Sami Keränen, Aino Manninen and Jenni Pippuri-Mäkeläinen
The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF).
Abstract
Purpose
The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF).
Design/methodology/approach
Ternary soft magnetic Fe-49Co-2V powder was produced by gas atomization and used in an L-PBF machine to produce samples for material characterization. The L-PBF process parameters were optimized for the material, using a design of experiments approach. The printed samples were exposed to different heat treatment cycles to improve the magnetic properties. The magnetic properties were measured with quasi-static direct current and alternating current measurements at different frequencies and magnetic flux densities. The mechanical properties were characterized with tensile tests. Electrical resistivity of the material was measured.
Findings
The optimized L-PBF process parameters resulted in very low porosity. The magnetic properties improved greatly after the heat treatments because of changes in microstructure. Based on the quasi-static DC measurement results, one of the heat treatment cycles led to magnetic saturation, permeability and coercivity values comparable to a commercial Fe-Co-V alloy. The other heat treatments resulted in abnormal grain growth and poor magnetic performance. The AC measurement results showed that the magnetic losses were relatively high in the samples owing to formation of eddy currents.
Research limitations/implications
The influence of L-PBF process parameters on the microstructure was not investigated; hence, understanding the relationship between process parameters, heat treatments and magnetic properties would require more research.
Originality/value
The relationship between microstructure, chemical composition, heat treatments, resistivity and magnetic/mechanical properties of L-PBF processed Fe-Co-V alloy has not been reported previously.
Details
Keywords
Kristen Snyder, Pernilla Ingelsson and Ingela Bäckström
This paper aims to explore how leaders can develop value-based leadership for sustainable quality development in Lean manufacturing.
Abstract
Purpose
This paper aims to explore how leaders can develop value-based leadership for sustainable quality development in Lean manufacturing.
Design/methodology/approach
A qualitative meta-analysis was conducted using data from a three-year study of Lean manufacturing in Sweden using the Shingo business excellence model as an analytical framework.
Findings
This study demonstrates that leaders can develop value-based leadership to support Lean manufacturing by defining and articulating the organization’s values and accompanying behaviors that are needed to support the strategic direction; creating forums and time for leaders to identify the why behind decisions and reflect on their experiences to be able to lead a transformative process; and using storytelling to create a coaching culture to connect values and behaviors, to the processes and systems of work.
Research limitations/implications
This paper contributes insights for developing value-based leadership to support a systemic approach to sustainable quality development in lean manufacturing. Findings are based on a limited case sample size of three manufacturing companies in Sweden.
Originality/value
The findings were derived using a unique methodological approach combining storytelling, appreciative inquiry and coaching with traditional data collection methods including surveys and interviews to identify, define and shape value-based leadership in Lean manufacturing.
Details
Keywords
Peter G. Kelly, Benjamin H. Gallup and Joseph D. Roy-Mayhew
Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on…
Abstract
Purpose
Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on a part have conflicting optimal orientations, the part is unavoidably compromised. This paper aims to demonstrate a strategy in which conflicting features can be functionally separated into “co-parts” which are individually aligned in an optimal orientation, selectively reinforced with continuous fiber, printed simultaneously and, finally, assembled into a composite part with substantially improved performance.
Design/methodology/approach
Several candidate parts were selected for co-part decomposition. They were printed as standard fused filament fabrication plastic parts, parts reinforced with continuous fiber in one plane and co-part assemblies both with and without continuous fiber reinforcement (CFR). All parts were loaded until failure. Additionally, parts representative of common suboptimally oriented features (“unit tests”) were similarly printed and tested.
Findings
CFR delivered substantial improvement over unreinforced plastic-only parts in both standard parts and co-part assemblies, as expected. Reinforced parts held up to 2.5x the ultimate load of equivalent plastic-only parts. The co-part strategy delivered even greater improvement, particularly when also reinforced with continuous fiber. Plastic-only co-part assemblies held up to 3.2x the ultimate load of equivalent plastic only parts. Continuous fiber reinforced co-part assemblies held up to 6.4x the ultimate load of equivalent plastic-only parts. Additionally, the thought process behind general co-part design is explored and a vision of simulation-driven automated co-part implementation is discussed.
Originality/value
This technique is a novel way to overcome one of the most common challenges preventing the functional use of additively manufactured parts. It delivers compelling performance with continuous carbon fiber reinforcement in 3D printed parts. Further study could extend the technique to any anisotropic manufacturing method, additive or otherwise.
Details
Keywords
Jianran Liu and Wen Ji
In recent years, with the increase in computing power, artificial intelligence can gradually be regarded as intelligent agents and interact with humans, this interactive network…
Abstract
Purpose
In recent years, with the increase in computing power, artificial intelligence can gradually be regarded as intelligent agents and interact with humans, this interactive network has become increasingly complex. Therefore, it is necessary to model and analyze this complex interactive network. This paper aims to model and demonstrate the evolution of crowd intelligence using visual complex networks.
Design/methodology/approach
This paper uses the complex network to model and observe the collaborative evolution behavior and self-organizing system of crowd intelligence.
Findings
The authors use the complex network to construct the cooperative behavior and self-organizing system in crowd intelligence. Determine the evolution mode of the node by constructing the interactive relationship between nodes and observe the global evolution state through the force layout.
Practical implications
The simulation results show that the state evolution map can effectively simulate the distribution, interaction and evolution of crowd intelligence through force layout and the intelligent agents’ link mode the authors proposed.
Originality/value
Based on the complex network, this paper constructs the interactive behavior and organization system in crowd intelligence and visualizes the evolution process.
Details