Search results
1 – 10 of 696M.C. Raju, S.V.K. Varma and A.J. Chamkha
The purpose of this paper is to present an analytical study for a problem of unsteady free convection boundary layer flow past a periodically accelerated vertical plate with…
Abstract
Purpose
The purpose of this paper is to present an analytical study for a problem of unsteady free convection boundary layer flow past a periodically accelerated vertical plate with Newtonian heating (NH).
Design/methodology/approach
The equations governing the flow are studied in the closed form by using the Laplace transform technique. The effects of various physical parameters are studied through graphs and the expressions for skin friction, Nusselt number and Sherwood number are also derived and discussed numerically.
Findings
It is observed that velocity, concentration and skin friction decrease with the increasing values of Sc whereas temperature distribution decreases in the increase in Pr in the presence of NH.
Research limitations/implications
This study is limited to a Newtonian fluid. This can be extended for non-Newtonian fluids.
Practical implications
Heat and mass transfer frequently occurs in chemically processed industries, distribution of temperature and moisture over agricultural fields, dispersion of fog and environment pollution and polymer production.
Social implications
Free convection flow of coupled heat and mass transfer occurs due to the temperature and concentration differences in the fluid as a result of driving forces. For example, in atmospheric flows, thermal convection resulting from heating of the earth by sunlight is affected differences in water vapor concentration.
Originality/value
The authors have studied heat and mass transfer effects on unsteady free convection boundary layer flow past a periodically accelerated vertical surface with NH, where the heat transfer rate from the bounding surface with a finite heat capacity is proportional to the local surface temperature, and which is usually termed as conjugate convective flow. The equations governing the flow are studied in the closed form by using the Laplace transform technique. The effects of various physical parameters are studied through graphs and the expression for skin friction also derived and discussed.
Details
Keywords
The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…
Abstract
Purpose
The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.
Design/methodology/approach
This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.
Findings
Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.
Originality/value
This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.
Details
Keywords
Gauri Shanker Seth, Rohit Sharma, Manoj Kumar Mishra and Ali J. Chamkha
The purpose of this paper is to assess steady, two-dimensional natural convection flow of a viscoelastic, incompressible, electrically conducting and optically thick…
Abstract
Purpose
The purpose of this paper is to assess steady, two-dimensional natural convection flow of a viscoelastic, incompressible, electrically conducting and optically thick heat-radiating nanofluid over a linearly stretching sheet in the presence of uniform transverse magnetic field taking Dufour and Soret effects into account.
Design/methodology/approach
The governing boundary layer equations are transformed into a set of highly non-linear ordinary differential equations using suitable similarity transforms. Finite element method is used to solve this boundary value problem. Effects of pertinent flow parameters on the velocity, temperature, solutal concentration and nanoparticle concentration are described graphically. Also, effects of pertinent flow parameters on the shear stress, rate of heat transfer, rate of solutal concentration and rate of nanoparticle concentration at the sheet are discussed with the help of numerical values presented in graphical form. All numerical results for mono-diffusive nanofluid are compared with those of double-diffusive nanofluid.
Findings
Numerical results obtained in this paper are compared with earlier published results and are found to be in excellent agreement. Viscoelasticity, magnetic field and nanoparticle buoyancy parameter tend to enhance the wall velocity gradient, whereas thermal buoyancy force has a reverse effect on it. Radiation, Brownian and thermophoretic diffusions tend to reduce wall temperature gradient, whereas viscoelasticity has a reverse effect on it. Nanofluid Lewis number tends to enhance wall nanoparticle concentration gradient.
Originality/value
Study of this problem may find applications in engineering and biomedical sciences,e.g. in cooling and process industries and in cancer therapy.
Details
Keywords
Mythili Durairaj, Sivaraj Ramachandran and Rashidi Mohammad Mehdi
The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate…
Abstract
Purpose
The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium in the presence of cross-diffusion effects.
Design/methodology/approach
A numerical computation for the governing equations has been performed using implicit finite difference method of Crank–Nicolson type.
Findings
The influence of various physical parameters on velocity, temperature and concentration distributions is illustrated graphically, and the physical aspects are discussed in detail. Numerical results for average skin-friction, Nusselt number and Sherwood number are tabulated for the pertaining physical parameters. Results indicate that Soret and Dufour effects have notable influence on heat and mass transfer characteristics of the fluid when the temperature and concentration gradients are high. It is also observed that the consideration of heat generation/absorption plays a vital role in predicting the heat transfer characteristics of moving fluids.
Research limitations/implications
Consider a two-dimensional, unsteady, free convective flow of an incompressible Casson fluid over a vertical cone and a flat plate saturated with non-Darcy porous medium. The fluid properties are assumed to be constant except for density variations in the buoyancy force term. The fluid flow is moderate and the permeability of the medium is assumed to be low, so that the Forchheimer flow model is applicable.
Practical implications
The flow of Casson fluids (such as drilling muds, clay coatings and other suspensions, certain oils and greases, polymer melts and many emulsions), in the presence of heat transfer, is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs.
Social implications
In the heat and mass transfer investigations, the Casson fluid model is found to be accurately applicable in many practical situations in the wings of polymer processing industries and biomechanics, etc.; some prominent examples are silicon suspensions, suspensions of bentonite in water and lithographic varnishes used for printing inks.
Originality/value
The motivation of the present study is to bring out the effects of heat source/sink, Soret and Dufour effects on chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium. The flow of Casson fluids (such as certain oils and greases, polymer melts and many emulsions) in the presence of heat transfer is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs. A numerical computation for the governing equations has been performed using implicit finite difference method of the Crank–Nicolson type.
Details
Keywords
Younes Menni, Ahmed Azzi and A. Chamkha
This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of…
Abstract
Purpose
This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000.
Design/methodology/approach
The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work.
Findings
Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel.
Originality/value
This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes
Details
Keywords
Ali Rahimi Gheynani, Omid Ali Akbari, Majid Zarringhalam, Gholamreza Ahmadi Sheikh Shabani, Abdulwahab A. Alnaqi, Marjan Goodarzi and Davood Toghraie
Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and…
Abstract
Purpose
Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and concentration on the velocity and temperature fields of turbulent non-Newtonian Carboxymethylcellulose (CMC)/copper oxide (CuO) nanofluid in a three-dimensional microtube. Modeling has been done using low- and high-Reynolds turbulent models. CMC/CuO was modeled using power law non-Newtonian model. The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices.
Design/methodology/approach
Present numerical simulation was performed with finite volume method. For obtaining higher accuracy in the numerical solving procedure, second-order upwind discretization and SIMPLEC algorithm were used. For all Reynolds numbers and volume fractions, a maximum residual of 10−6 is considered for saving computer memory usage and the time for the numerical solving procedure.
Findings
In constant Reynolds number and by decreasing the diameter of nanoparticles, the convection heat transfer coefficient increases. In Reynolds numbers of 2,500, 4,500 and 6,000, using nanoparticles with the diameter of 25 nm compared with 50 nm causes 0.34 per cent enhancement of convection heat transfer coefficient and Nusselt number. Also, in Reynolds number of 2,500, by increasing the concentration of nanoparticles with the diameter of 25 nm from 0.5 to 1 per cent, the average Nusselt number increases by almost 0.1 per cent. Similarly, In Reynolds numbers of 4,500 and 6,000, the average Nusselt number increases by 1.8 per cent.
Research limitations/implications
The numerical simulation was carried out for three nanoparticle diameters of 25, 50 and 100 nm with three Reynolds numbers of 2,500, 4,500 and 6,000. Constant heat flux is on the channel, and the inlet fluid becomes heated and exists from it.
Practical implications
The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices.
Originality/value
This manuscript is an original work, has not been published and is not under consideration for publication elsewhere. About the competing interests, the authors declare that they have no competing interests.
Details
Keywords
S. Hoseinzadeh, P.S. Heyns and H. Kariman
The purpose of this paper is to investigate the heat transfer of laminar and turbulent pulsating Al203/water nanofluid flow in a two-dimensional channel. In the laminar flow…
Abstract
Purpose
The purpose of this paper is to investigate the heat transfer of laminar and turbulent pulsating Al203/water nanofluid flow in a two-dimensional channel. In the laminar flow range, with increasing Reynolds number (Re), the velocity gradient is increased. Also, the Nusselt number (Nu) is increased, which causes increase in the overall heat transfer rate. Additionally, in the change of flow regime from laminar to turbulent, average thermal flux and pulsation range are increased. Also, the effect of different percentage of Al2O3/water nanofluid is investigated. The results show that the addition of nanofluids improve thermal performance in channel, but the using of nanofluid causes a pressure drop in the channel.
Design/methodology/approach
The pulsatile flow and heat transfer in a two-dimensional channel were investigated.
Findings
The numerical results show that the Al2O3/Water nanofluid has a significant effect on the thermal properties of the different flows (laminar and turbulent) and the average thermal flux and pulsation ranges are increased in the change of flow regime from laminar to turbulent. Also, the addition of nanofluid improves thermal performance in channels.
Originality/value
The originality of this work lies in proposing a numerical analysis of heat transfer of pulsating Al2O3/Water nanofluid flow -with different percentages- in the two-dimensional channel while the flow regime change from laminar to turbulent.
Details
Keywords
P. Sudarsana Reddy and A. Chamkha
In recent years, nanofluids are being widely used in many thermal systems because of their higher thermal conductivity and heat transfer rate. The higher thermal conductivity…
Abstract
Purpose
In recent years, nanofluids are being widely used in many thermal systems because of their higher thermal conductivity and heat transfer rate. The higher thermal conductivity depends on many parameters such as size, shape and volume and the Brownian motion and thermophoresis of added nanoparticles. The purpose of this paper is to analyze the influence of the Brownian motion and thermophoresis on natural convection heat and mass transfer boundary layer flow of nanofluids over a vertical cone with radiation.
Design/methodology/approach
Using similarity variables, the non-linear partial differential equations, which represent momentum, energy and diffusion, are transformed into ordinary differential equations. The transformed conservation equations are solved numerically subject to the boundary conditions by using versatile, extensively validated, variational finite-element method.
Findings
The sway of significant parameters such as magnetic field (M), buoyancy ratio parameter (Nr), Brownian motion parameter (Nb), thermophoresis parameter (Nt), thermal radiation (R), Lewis number (Le) and chemical reaction parameter (Cr) on velocity, temperature and concentration evaluation in the boundary layer region is examined in detail. The results are compared with previously published work and are found to be in agreement. The velocity distributions are reduced, while temperature and concentration profiles elevate with a higher (M). With the improving values of (R), the velocity and temperature sketches improve, while concentration distributions are lowered in the boundary layer region. The temperature and concentration profiles are elevated in the boundary layer region for higher values of (Nt). With the increasing values of (Nb), temperature profiles are enhanced, whereas concentration profiles get depreciated in the flow region.
Social implications
In recent years, it has been found that magneto-nanofluids are significant in many areas of science and technology. It has applications in optical modulators, magnetooptical wavelength filters, tunable optical fiber filters and optical switches. Magnetic nanoparticles are especially useful in biomedicine, sink float separation, cancer therapy, etc. Specific biomedical applications involving nanofluids include hyperthermia, magnetic cell separation, drug delivery and contrast enhancement in magnetic resonance imaging.
Originality/value
To the best of the authors’ knowledge, no studies have assessed the impact of the two slip effects, namely, Brownian motion and thermophoresis, on the natural convection of electrically conducted heat and mass transfer to the nanofluid boundary layer flow over a vertical cone in the presence of radiation and chemical reaction; therefore, this problem has been addressed in this study. Comparison of the results of this study’s with those of previously published work was found to be in good agreement.
Details
Keywords
Macha Madhu, Naikoti Kishan and A. Chamkha
The purpose of this paper is to study the boundary layer flow and heat transfer of a power-law non-Newtonian nanofluid over a non-linearly stretching sheet.
Abstract
Purpose
The purpose of this paper is to study the boundary layer flow and heat transfer of a power-law non-Newtonian nanofluid over a non-linearly stretching sheet.
Design/methodology/approach
The governing equations describing the problem are transformed into a nonlinear ordinary differential equations by suitable similarity transformations. The resulting equations for this investigation are solved numerically by using the variational finite element method.
Findings
It was found that the local Nusselt number increases by increasing the Prandtl number, stretching sheet parameter and decreases by increasing the power-law index, thermophoresis parameter and Lewis number. Increases in the stretching sheet parameter, Prandtl number and thermophoresis parameter decrease the local Sherwood number values. The effects of Brownian motion and Lewis number lead to increases in the local Sherwood number values.
Originality/value
The work is relatively original as very little work has been reported on non-Newtonian nanofluids.
Details
Keywords
Rohana Abdul Hamid, Roslinda Nazar and Ioan Pop
This present aims to present the numerical study of the unsteady stretching/shrinking flow of a fluid-particle suspension in the presence of the constant suction and dust particle…
Abstract
Purpose
This present aims to present the numerical study of the unsteady stretching/shrinking flow of a fluid-particle suspension in the presence of the constant suction and dust particle slip on the surface.
Design/methodology/approach
The governing partial differential equations for the two phases flows of the fluid and the dust particles are reduced to the pertinent ordinary differential equations using a similarity transformation. The numerical results are obtained using the bvp4c function in the Matlab software.
Findings
The results revealed that in the decelerating shrinking flow, the wall skin friction is higher in the dusty fluid when compared to the clean fluid. In addition, the effect of the fluid-particle interaction parameter to the fluid-phase can be seen more clearly in the shrinking flow. Other non-dimensional physical parameters such as the unsteadiness parameter, the mass suction parameter, the viscosity ratio parameter, the particle slip parameter and the particle loading parameter are also considered and presented in figures. Further, the second solution is discovered in this problem and the solution expanded with higher unsteadiness and suction values. Hence, the stability analysis is performed, and it is confirmed that the second solution is unstable.
Practical implications
In practice, the flow conditions are commonly varying with time; thus, the study of the unsteady flow is very crucial and useful. The problem of unsteady flow of a dusty fluid has a wide range of possible applications such as in the centrifugal separation of particles, sedimentation and underground disposable of radioactive waste materials.
Originality/value
Even though the problem of dusty fluid has been broadly investigated, limited discoveries can be found over an unsteady shrinking flow. Indeed, this paper managed to obtain the second (dual) solutions, and stability analysis is performed. Furthermore, the authors also considered the artificial particle-phase viscosity, which is an important term to study the particle-particle and particle-wall interactions. With the addition of this term, the effects of the particle slip and suction parameters can be investigated. Very few studies in the dusty fluid embedded this parameter in their problems.
Details