Search results

1 – 4 of 4
Open Access
Article
Publication date: 10 November 2023

Chongyi Chang, Gang Guo, Wen He and Zhendong Liu

The objective of this study is to investigate the impact of longitudinal forces on extreme-long heavy-haul trains, providing new insights and methods for their design and…

Abstract

Purpose

The objective of this study is to investigate the impact of longitudinal forces on extreme-long heavy-haul trains, providing new insights and methods for their design and operation, thereby enhancing safety, operational efficiency and track system design.

Design/methodology/approach

A longitudinal dynamics simulation model of the super long heavy haul train was established and verified by the braking test data of 30,000 t heavy-haul combination train on the long and steep down grade of Daqing Line. The simulation model was used to analyze the influence of factors on the longitudinal force of super long heavy haul train.

Findings

Under normal conditions, the formation length of extreme-long heavy-haul combined train has a small effect on the maximum longitudinal coupler force under full service braking and emergency braking on the straight line. The slope difference of the long and steep down grade has a great impact on the maximum longitudinal coupler force of the extreme-long heavy-haul trains. Under the condition that the longitudinal force does not exceed the safety limit of 2,250 kN under full service braking at the speed of 60 km/h the maximum allowable slope difference of long and steep down grade for 40,000 t super long heavy-haul combined trains is 13‰, and that of 100,000 t is only 5‰.

Originality/value

The results will provide important theoretical basis and practical guidance for further improving the transportation efficiency and safety of extreme-long heavy-haul trains.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 6 June 2023

Philipp Geiberger, Zhendong Liu, Mats Berg and Christoph Domay

For billing purposes, heavy-haul locomotives in Sweden are equipped with on-board energy meters, which can record several parameters, e.g., used energy, regenerated energy, speed…

Abstract

Purpose

For billing purposes, heavy-haul locomotives in Sweden are equipped with on-board energy meters, which can record several parameters, e.g., used energy, regenerated energy, speed and position. Since there is a strong demand for improving energy efficiency in Sweden, data from the energy meters can be used to obtain a better understanding of the detailed energy usage of heavy-haul trains and identify potential for future improvements.

Design/methodology/approach

To monitor energy efficiency, the present study, therefore, develops key performance indicators (KPIs), which can be calculated with energy meter data to reflect the energy efficiency of heavy-haul trains in operation. Energy meter data of IORE class locomotives, hauling highly uniform 30-tonne axle load trains with 68 wagons, together with additional data sources, are analysed to identify significant parameters for describing driver influence on energy usage.

Findings

Results show that driver behaviour varies significantly and has the single largest influence on energy usage. Furthermore, parametric studies are performed with help of simulation to identify the influence of different operational and rolling stock conditions, e.g., axle loads and number of wagons, on energy usage.

Originality/value

Based on the parametric studies, some operational parameters which have significant impact on energy efficiency are found and then the KPIs are derived. In the end, some possible measures for improving energy performance in heavy-haul operations are given.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 July 2020

Lin Gui, Zhendong Yin and Huihua Nie

The stability maintenance system has played an essential role in maintaining social stability although it also has brought about social problems worthy of attention. Admittedly…

4290

Abstract

Purpose

The stability maintenance system has played an essential role in maintaining social stability although it also has brought about social problems worthy of attention. Admittedly compensation-based stability maintenance policy can address the appeals of citizens whose rights are infringed and the dissolving effect in the provision of compensation can save the cost of stability maintenance but such stability maintenance system lacks equilibrium.

Design/methodology/approach

The establishment of a strict assessment system for stability maintenance performance can encourage the stability maintenance authorities to eliminate the “fuse effect” as much as possible and ensure the effective implementation of the stability maintenance system. However, the rigorous stability maintenance performance assessment also provides the possibility for profit-driven petitions.

Findings

Due to the continuous accumulation of social dissatisfaction and the lack of stability maintenance equilibrium in the implementation of the compensation-based stability maintenance policy, public governance will fall into a stability maintenance paradox of “greater instability resulting from stability maintenance”.

Originality/value

The provision of sufficient means for the people to protect their interest by implementing measures such as strengthening the rule of law mechanisms is the key to achieve long-term social stability.

Details

China Political Economy, vol. 3 no. 1
Type: Research Article
ISSN: 2516-1652

Keywords

Open Access
Article
Publication date: 9 December 2022

Rui Wang, Shunjie Zhang, Shengqiang Liu, Weidong Liu and Ao Ding

The purpose is using generative adversarial network (GAN) to solve the problem of sample augmentation in the case of imbalanced bearing fault data sets and improving residual…

Abstract

Purpose

The purpose is using generative adversarial network (GAN) to solve the problem of sample augmentation in the case of imbalanced bearing fault data sets and improving residual network is used to improve the diagnostic accuracy of the bearing fault intelligent diagnosis model in the environment of high signal noise.

Design/methodology/approach

A bearing vibration data generation model based on conditional GAN (CGAN) framework is proposed. The method generates data based on the adversarial mechanism of GANs and uses a small number of real samples to generate data, thereby effectively expanding imbalanced data sets. Combined with the data augmentation method based on CGAN, a fault diagnosis model of rolling bearing under the condition of data imbalance based on CGAN and improved residual network with attention mechanism is proposed.

Findings

The method proposed in this paper is verified by the western reserve data set and the truck bearing test bench data set, proving that the CGAN-based data generation method can form a high-quality augmented data set, while the CGAN-based and improved residual with attention mechanism. The diagnostic model of the network has better diagnostic accuracy under low signal-to-noise ratio samples.

Originality/value

A bearing vibration data generation model based on CGAN framework is proposed. The method generates data based on the adversarial mechanism of GAN and uses a small number of real samples to generate data, thereby effectively expanding imbalanced data sets. Combined with the data augmentation method based on CGAN, a fault diagnosis model of rolling bearing under the condition of data imbalance based on CGAN and improved residual network with attention mechanism is proposed.

Details

Smart and Resilient Transportation, vol. 5 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Access

Only Open Access

Year

Content type

1 – 4 of 4