Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 8 November 2022

Yilong Ren and Jianbin Wang

The missing travel time data for roads is a common problem encountered by traffic management departments. Tensor decomposition, as one of the most widely used method for…

392

Abstract

Purpose

The missing travel time data for roads is a common problem encountered by traffic management departments. Tensor decomposition, as one of the most widely used method for completing missing traffic data, plays a significant role in the intelligent transportation system (ITS). However, existing methods of tensor decomposition focus on the global data structure, resulting in relatively low accuracy in fibrosis missing scenarios. Therefore, this paper aims to propose a novel tensor decomposition model which further considers the local spatiotemporal similarity for fibrosis missing to improve travel time completion accuracy.

Design/methodology/approach

The proposed model can aggregate road sections with similar physical attributes by spatial clustering, and then it calculates the temporal association of road sections by the dynamic longest common subsequence. A similarity relationship matrix in the temporal dimension is constructed and incorporated into the tensor completion model, which can enhance the local spatiotemporal relationship of the missing parts of the fibrosis type.

Findings

The experiment shows that this method is superior and robust. Compared with other baseline models, this method has the smallest error and maintains good completion results despite high missing rates.

Originality/value

This model has higher accuracy for the fibrosis missing and performs good convergence effects in the case of the high missing rate.

Details

Smart and Resilient Transportation, vol. 4 no. 3
Type: Research Article
ISSN: 2632-0487

Keywords

Access

Only Open Access

Year

Content type

1 – 1 of 1
Per page
102050