Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 20 October 2021

Wenjie Fan, Yong Liu, Hongxiu Li, Virpi Kristiina Tuunainen and Yanqing Lin

Drawing on attribution theory, the current paper aims to examine the effects of review content structures on online review helpfulness, focusing on three pertinent variables…

6118

Abstract

Purpose

Drawing on attribution theory, the current paper aims to examine the effects of review content structures on online review helpfulness, focusing on three pertinent variables: review sidedness, information factuality, and emotional intensity at the beginning of a review. Moreover, the moderating roles of reviewer reputation and review sentiment are investigated.

Design/methodology/approach

The review sentiment of 144,982 online hotel reviews was computed at the sentence level by considering the presence of adverbs and negative terms. Then, the authors quantified the impact of variables that were pertinent to review content structures on online review helpfulness in terms of review sidedness, information factuality and emotional intensity at the beginning of a review. Zero-inflated negative binomial regression was employed to test the model.

Findings

The results reveal that review sidedness negatively affects online review helpfulness, and reviewer reputation moderates this effect. Information factuality positively affects online review helpfulness, and positive sentiment moderates this impact. A review that begins with a highly emotional statement is more likely to be perceived as less helpful.

Originality/value

Using attribution theory as a theoretical lens, this study contributes to the online customer review literature by investigating the impact of review content structures on online review helpfulness and by demonstrating the important moderating effects of reviewer reputation and review sentiment. The findings can help practitioners develop effective review appraisal mechanisms and guide consumers in producing helpful reviews.

Available. Open Access. Open Access
Article
Publication date: 30 June 2020

Asefeh Asemi, Andrea Ko and Mohsen Nowkarizi

This paper reviews literature on the application of intelligent systems in the libraries with a special issue on the ES/AI and Robot. Also, it introduces the potential of…

26294

Abstract

Purpose

This paper reviews literature on the application of intelligent systems in the libraries with a special issue on the ES/AI and Robot. Also, it introduces the potential of libraries to use intelligent systems, especially ES/AI and robots.

Design/methodology/approach

Descriptive and content review methods are applied, and the researchers critically reviewed the articles related to library ESs and robots from Web of Science as a general database and Emerald as a specific database in library and information science from 2007–2017. Four scopes considered to classify the articles as technology, service, user and resource. It is found that published researches on the intelligent systems have contributed to many librarian purposes like library technical services like the organization of information resources, storage and retrieval of information resources, library public services as reference services, information desk and other purposes.

Findings

A review of the previous studies shows that ESs are a useable intelligent system in library and information science that mimic librarian expert’s behaviors to support decision making and management. Also, it is shown that the current information systems have a high potential to be improved by integration with AI technologies. In this researches, librarian robots mostly designed for detection and replacing books on the shelf. Improving the technology of gripping, localizing and human-robot interaction are the main concern in recent librarian robot research. Our conclusion is that we need to develop research in the area of smart resources.

Originality/value

This study has a new approach to the literature review in this area. We compared the published papers in the field of ES/AI and robot and library from two databases, general and specific.

Access

Only Open Access

Year

Content type

1 – 2 of 2
Per page
102050