Search results
1 – 2 of 2Xuhui Ye, Gongping Wu, Fei Fan, XiangYang Peng and Ke Wang
An accurate detection of overhead ground wire under open surroundings with varying illumination is the premise of reliable line grasping with the off-line arm when the inspection…
Abstract
Purpose
An accurate detection of overhead ground wire under open surroundings with varying illumination is the premise of reliable line grasping with the off-line arm when the inspection robot cross obstacle automatically. This paper aims to propose an improved approach which is called adaptive homomorphic filter and supervised learning (AHSL) for overhead ground wire detection.
Design/methodology/approach
First, to decrease the influence of the varying illumination caused by the open work environment of the inspection robot, the adaptive homomorphic filter is introduced to compensation the changing illumination. Second, to represent ground wire more effectively and to extract more powerful and discriminative information for building a binary classifier, the global and local features fusion method followed by supervised learning method support vector machine is proposed.
Findings
Experiment results on two self-built testing data sets A and B which contain relative older ground wires and relative newer ground wire and on the field ground wires show that the use of the adaptive homomorphic filter and global and local feature fusion method can improve the detection accuracy of the ground wire effectively. The result of the proposed method lays a solid foundation for inspection robot grasping the ground wire by visual servo.
Originality/value
This method AHSL has achieved 80.8 per cent detection accuracy on data set A which contains relative older ground wires and 85.3 per cent detection accuracy on data set B which contains relative newer ground wires, and the field experiment shows that the robot can detect the ground wire accurately. The performance achieved by proposed method is the state of the art under open environment with varying illumination.
Details
Keywords
Dongdong Ge, Luhui Hu, Bo Jiang, Guangjun Su and Xiaole Wu
The purpose of this paper is to achieve intelligent superstore site selection. Yonghui Superstores partnered with Cardinal Operations to incorporate a tremendous amount of…
Abstract
Purpose
The purpose of this paper is to achieve intelligent superstore site selection. Yonghui Superstores partnered with Cardinal Operations to incorporate a tremendous amount of site-related information (e.g. points of interest, population density and features, distribution of competitors, transportation, commercial ecosystem, existing own-store network) into its store site optimization.
Design/methodology/approach
This paper showcases the integration of regression, optimization and machine learning approaches in site selection, which has proven practical and effective.
Findings
The result was the development of the “Yonghui Intelligent Site Selection System” that includes three modules: business district scoring, intelligent site engine and precision sales forecasting. The application of this system helps to significantly reduce the labor force required to visit and investigate all potential sites, circumvent the pitfalls associated with possibly biased experience or intuition-based decision making and achieve the same population coverage as competitors while needing only half the number of stores as its competitors.
Originality/value
To our knowledge, this project is among the first to integrate regression, optimization and machine learning approaches in site selection. There is innovation in optimization techniques.
Details