Search results

1 – 3 of 3
Open Access
Article
Publication date: 12 July 2022

Tianyue Feng, Lihao Liu, Xingyu Xing and Junyi Chen

The purpose of this paper is to search for the critical-scenarios of autonomous vehicles (AVs) quickly and comprehensively, which is essential for verification and validation…

Abstract

Purpose

The purpose of this paper is to search for the critical-scenarios of autonomous vehicles (AVs) quickly and comprehensively, which is essential for verification and validation (V&V).

Design/methodology/approach

The author adopted the index F1 to quantitative critical-scenarios' coverage of the search space and proposed the improved particle swarm optimization (IPSO) to enhance exploration ability for higher coverage. Compared with the particle swarm optimization (PSO), there were three improvements. In the initial phase, the Latin hypercube sampling method was introduced for a uniform distribution of particles. In the iteration phase, the neighborhood operator was adapted to explore more modals with the particles divided into groups. In the convergence phase, the convergence judgment and restart strategy were used to explore the search space by avoiding local convergence. Compared with the Monte Carlo method (MC) and PSO, experiments on the artificial function and critical-scenarios search were carried out to verify the efficiency and the application effect of the method.

Findings

Results show that IPSO can search for multimodal critical-scenarios comprehensively, with a stricter threshold and fewer samples in the experiment on critical-scenario search, the coverage of IPSO is 14% higher than PSO and 40% higher than MC.

Originality/value

The critical-scenarios' coverage of the search space is firstly quantified by the index F1, and the proposed method has higher search efficiency and coverage for the critical-scenarios search of AVs, which shows application potential for V&V.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 14 May 2024

Yanhong Gan, Xingyu Gao, Wenhui Zhou, Siyuan Ke, Yangguang Lu and Song Zhang

The advanced technology enables retailers to develop customer profile analysis (CPA) to implement personalized pricing. However, considering the efficiency of developing CPA, the…

Abstract

Purpose

The advanced technology enables retailers to develop customer profile analysis (CPA) to implement personalized pricing. However, considering the efficiency of developing CPA, the benefit to different retailers of implementing more precise personalized pricing remains unclear. Thus, this essay aimed to investigate the impact of efficiency on participants’ strategies and profits in the supply chain.

Design/methodology/approach

A two-stage game model was introduced in the presence of a manufacturer who sets his wholesale price and a retailer that decides her CPA strategy. The equilibrium results were generated by backward induction.

Findings

Most retailers are willing to develop the highest CPA to implement perfect personalized pricing, but those inefficient retailers with high production costs would like to determine a middle CPA to implement bounded personalized pricing. The retailers’ profits may decrease with the efficiency of developing CPA when the efficiency is middle. In this case, as the efficiency improves, the manufacturer increases the wholesale price, resulting in lower demand and thus lower profits. Moreover, define a Pareto Improvement (PI) strategy as one that benefits both manufacturers and retailers. Therefore, uniform pricing is a PI when the unit cost is high and the efficiency is low; personalized pricing is a PI when the unit cost is low and the efficiency is low or high; otherwise, there is no PI.

Originality/value

This study is the first that investigates how the retailer develops CPA to implement personalized pricing on a comprehensive spectrum, which can provide practical insights for retailers with different efficiencies.

Details

Modern Supply Chain Research and Applications, vol. 6 no. 2
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 15 November 2022

Zhiqiang Zhang, Xingyu Zhu and Ronghua Wei

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and…

Abstract

Purpose

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and misalignment. There is no developed system of fortification and related codes to follow. There are scientific problems and technical challenges in this field that have never been encountered in past research and practices.

Design/methodology/approach

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation based on the open-cut tunnel project of the Urumqi Rail Transit Line 2, which passes through the Jiujiawan normal fault. The test simulated the subway tunnel passing through the normal fault, which is inclined at 60°. This research compared and analyzed the differences in mechanical behavior between two types of lining section: the open-cut double-line box tunnel and the modified double-line box arch tunnel. The structural response and failure characteristics of the open-cut segmented lining of the tunnel under the stick-slip part of the normal fault were studied.

Findings

The results indicated that the double-line box arch tunnel improved the shear and longitudinal bending performance. Longitudinal cracks were mainly distributed in the baseplate, wall foot and arch foot, and the crack position was basically consistent with the longitudinal distribution of surrounding rock pressure. This indicated that the longitudinal cracks were due to the large local load of the cross-section of the structure, leading to an excessive local bending moment of the structure, which resulted in large eccentric failure of the lining and formation of longitudinal cracks. Compared with the ordinary box section tunnel, the improved double-line box arch tunnel significantly reduced the destroyed and damage areas of the hanging wall and footwall. The damage area and crack length were reduced by 39 and 59.3%, respectively. This indicates that the improved double-line box arch tunnel had good anti-sliding performance.

Originality/value

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation. This system increased the similarity ratio of the test model, improved the dislocation loading rate and optimized the simulation scheme of the segmented flexible lining and other key factors affecting the test. It is of great scientific significance and engineering value to investigate the structure of subway tunnels under active fault misalignment, to study its force characteristics and damage modes, and to provide a technical reserve for the design and construction of subway tunnels through active faults.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Access

Only Open Access

Year

Content type

1 – 3 of 3