Search results
1 – 10 of 105Abstract
Purpose
The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s athletic ability, load capacity and rigidity, and to ensure the coordination of multi-modal motion.
Design/methodology/approach
First, based on the rotation transformation matrix and closed-loop constraint equation of the parallel trunk joint mechanism, the mathematical model of its inverse position solution is constructed. Then, the Jacobian matrix of velocity and acceleration is derived by time derivative method. On this basis, the stiffness matrix of the parallel trunk joint mechanism is derived on the basis of the principle of virtual work and combined with the deformation effect of the rope driving pair and the spring elastic restraint pair. Then, the eigenvalue distribution of the stiffness matrix and the global stiffness performance index are used as the stiffness evaluation index of the mechanism. In addition, the performance index of athletic dexterity is analyzed. Finally, the distribution map of kinematic dexterity and stiffness is drawn in the workspace by numerical simulation, and the influence of the introduced spring on the stiffness distribution of the parallel trunk joint mechanism is compared and analyzed. It is concluded that the stiffness in the specific direction of the parallel trunk joint mechanism can be improved, and the stiffness distribution can be improved by adjusting the spring elastic structure parameters of the rope-driven branch chain.
Findings
Studies have shown that the wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring has a great kinematic dexterity, load-carrying capacity and stiffness performance.
Research limitations/implications
The soft-mixed structure is not mature, and there are few new materials for the soft-mixed mixture; the rope and the rigid structure are driven together with a large amount of friction and hindrance factors, etc.
Practical implications
It ensures that the multi-motion mode hexapod mobile robot can meet the requirement of sufficient different stiffness for different motion postures through the parallel trunk joint mechanism, and it ensures that the multi-motion mode hexapod mobile robot in multi-motion mode can meet the performance requirement of global stiffness change at different pose points of different motion postures through the parallel trunk joint mechanism.
Social implications
The trunk structure is a very critical mechanism for animals. Animals in the movement to achieve smooth climbing, overturning and other different postures, such as centipede, starfish, giant salamander and other multi-legged animals, not only rely on the unique leg mechanism, but also must have a unique trunk joint mechanism. Based on the cooperation of these two mechanisms, the animal can achieve a stable, flexible and flexible variety of motion characteristics. Therefore, the trunk joint mechanism has an important significance for the coordinated movement of the whole body of the multi-sport mode mobile robot (Huang Hu-lin, 2016).
Originality/value
In this paper, based on the idea of combining rigid parallel mechanism with wire-driven mechanism, a trunk mechanism is designed, which is composed of four spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism in series. Its spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism can make the multi-motion mode mobile robot have better load capacity, mobility and stiffness performance (Qi-zhi et al., 2018; Cong-hao et al., 2018), thus improving the environmental adaptability and reliability of the multi-motion mode mobile robot.
Details
Keywords
Saad Ahmed Javed, Yu Bo, Liangyan Tao and Wenjie Dong
Global supply chains experienced unprecedented changes in 2020 and the relationship between domestic and global markets needed adjustments considering the long-term impacts of the…
Abstract
Purpose
Global supply chains experienced unprecedented changes in 2020 and the relationship between domestic and global markets needed adjustments considering the long-term impacts of the changes that are unfolding around these markets. China has become the first country to announce a formal strategy – “Dual Circulation” Strategy (DCS) – to guide its self-reliant economic development in the post-COVID era. However, what exactly is the DCS and what drove China to publicize this strategy is not yet clear. This study aims to answer these questions.
Design/methodology/approach
Based on an extensive review of literature and media reports, a background has been constructed that justifies the DCS as a long-overdue historic necessity.
Findings
A novel definition of “Dual Circulation” is introduced. A novel construct to visualize the domestic circulation in light of international and domestic markets and international circulation has been presented. The study argues that maintaining optimum levels of consumption and saving rates is crucial to the DCS’s success.
Originality/value
The study pioneers the first scientific definition of the “Dual Circulation” that will pave way for future debate on the topic. Also, it is the first time an academic study on the DCS has been executed.
Details
Keywords
This study aims to explore the traditional plant dyeing of Xinjiang Atlas silk fabrics, providing references for the comprehensive utilization of plant dyes in intangible…
Abstract
Purpose
This study aims to explore the traditional plant dyeing of Xinjiang Atlas silk fabrics, providing references for the comprehensive utilization of plant dyes in intangible cultural heritage.
Design/methodology/approach
The focus of this study is on dyeing experiments of Atlas silk fabrics using safflower extracts, constrained by regional resources. Safflower dry flowers grown in Xinjiang were selected, rinsed with pure water and rubbed. Yellow pigments were removed by adding edible white vinegar. Red pigments from safflower were extracted using an alkaline solution prepared with Populus euphratica ash, a special product of Xinjiang. The extraction rate was analyzed under varying material-to-liquor ratios, pH values, times and temperatures. Direct dyeing process experiments were conducted to obtain different colorimetric L, a, b and K/S values for comparison. Samples with good color development were selected to test the impact of dyeing immersions on color development, and their color fastness, UV protection and antibacterial effects were verified.
Findings
The dyeing experiments on silk fabrics confirmed their UV protection capabilities and antibacterial properties, demonstrating effectiveness against E. coli and Staphylococcus aureus. As a major producer of safflower, Xinjiang underscores the significance of safflower as an essential plant dyes on the Silk Road. This study reveals its market potential and suitability for use in the plant dyeing process of Atlas silk, producing vibrant red and pink colors.
Originality/value
The experiments indicated that after removing yellow pigments, the highest extraction rate of red pigment from safflower was achieved at a pH value of 10–11, a temperature of 30°C and an extraction time of 40 min. The best bright red color effect with strong color fastness was obtained with a material-to-liquor ratio of 1:20, a temperature of 40°C and three immersions. The best light pink color effect with strong color fastness was a material-to-liquor ratio of 1:80, a temperature of 30°C and two immersions.
Details
Keywords
Yi liu, Ping Li, Boqing Feng, Peifen Pan, Xueying Wang and Qiliang Zhao
This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of…
Abstract
Purpose
This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.
Design/methodology/approach
This paper provides a comprehensive overview of the definition, connotations, characteristics and key technologies of digital twin technology. It also conducts a thorough analysis of the current state of digital twin applications, with a particular focus on the overall requirements for intelligent operation and maintenance of high-speed railway infrastructure. Using the Jinan Yellow River Bridge on the Beijing–Shanghai high-speed railway as a case study, the paper details the construction process of the twin system from the perspectives of system architecture, theoretical definition, model construction and platform design.
Findings
Digital twin technology can play an important role in the whole life cycle management, fault prediction and condition monitoring in the field of high-speed rail operation and maintenance. Digital twin technology is of great significance to improve the intelligent level of high-speed railway operation and management.
Originality/value
This paper systematically summarizes the main components of digital twin railway. The general framework of the digital twin bridge is given, and its application in the field of intelligent operation and maintenance is prospected.
Details
Keywords
Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Abstract
Purpose
This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.
Design/methodology/approach
Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.
Findings
The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.
Originality/value
The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
Details
Keywords
Yuxin Zhang, Wei Dong, Junyan Wang, Congcong Che and Lefei Li
Through this research study, the authors found that digital thread has made significant progress in the life cycle management of the US Air Force. The authors hope that by…
Abstract
Purpose
Through this research study, the authors found that digital thread has made significant progress in the life cycle management of the US Air Force. The authors hope that by reviewing similar studies in the aerospace field, the meaning of digital thread can be summarized and applied to a wider range of fields. In addition, theoretically, the definition of digital twin and digital thread are not unified. The authors hope that the comparison of digital thread and digital twin will better enable scholars to distinguish between the two concepts. Besides, the authors are also looking forward that more people will realize the significance of digital thread and carry out future research.
Design/methodology/approach
Complete research about digital thread and the relevant concept of the digital twin is conducted. First, by searching in Google Scholar with the keyword “digital thread”, the authors filter results and save literature with high relevance to digital thread. The authors also track these papers’ references for more paper of digital thread and digital twin. After removing the duplicate and low-relevance literature, 72 digital thread-related literature studies are saved and further analyzed from the perspective of time development, application field and research directions.
Findings
Digital thread application in industries other than the aviation manufacturing industry is still relatively few, and the research on the application of digital thread in real industrial scenarios is mainly at the stage of framework design and design-side decision optimization. In addition, the digital thread needs a new management mechanism and organizational structure to realize landing. The new management mechanism and the process can adapt to the whole life cycle management process based on the digital thread, manage the data security and data update, and promote the digital thread to play a better effect on the organizational management.
Practical implications
Based on a review of digital thread, future research directions and usage suggestions are given. The fault diagnosis of high-speed train bogie as an example shows the effectiveness of the method and also partially demonstrates the advantages and effects brought by the digital thread connecting the data models at various stages.
Originality/value
This paper first investigates and analyzes the theoretical connotation and research progress of digital thread and gives a complete definition of digital thread from the perspective of the combination of digital thread and digital twins. Next, the research process of digital thread is reviewed, and the application fields, research directions and achievements in recent years are summarized. Finally, taking the fault diagnosis of high-speed train bogie as an example partially demonstrates the advantages and effects brought by the digital thread connecting the data models at various stages.
Details
Keywords
Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo
This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.
Abstract
Purpose
This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.
Design/methodology/approach
Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.
Findings
The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.
Originality/value
The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.
Details
Keywords
Rongsheng Wang, Tao Zhang, Zhiming Yuan, Shuxin Ding and Qi Zhang
This paper aims to propose a train timetable rescheduling (TTR) approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information…
Abstract
Purpose
This paper aims to propose a train timetable rescheduling (TTR) approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.
Design/methodology/approach
Firstly, a single-train trajectory optimization (STTO) model is constructed based on train dynamics and operating conditions. The train kinematics parameters, including acceleration, speed and time at each position, are calculated to predict the arrival times in the train timetable. A STTO algorithm is developed to optimize a single-train time-efficient driving strategy. Then, a TTR approach based on multi-train tracking optimization (TTR-MTTO) is proposed with mutual information. The constraints of temporary speed restriction (TSR) and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train. The multi-train trajectories at each position are optimized to generate a time-efficient train timetable.
Findings
The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF. The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay (TTD). As for the TSR scenario, the proposed TTR-MTTO can reduce TTD by 60.60% compared with the traditional TTR approach with dispatchers’ experience. Moreover, TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.
Originality/value
With the cooperative relationship and mutual information between train rescheduling and control, the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.
Details
Keywords
Shuxin Ding, Tao Zhang, Kai Sheng, Yuanyuan Chen and Zhiming Yuan
The intelligent Central Traffic Control (CTC) system plays a vital role in establishing an intelligent high-speed railway (HSR) system. As the core of HSR transportation command…
Abstract
Purpose
The intelligent Central Traffic Control (CTC) system plays a vital role in establishing an intelligent high-speed railway (HSR) system. As the core of HSR transportation command, the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching. This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.
Design/methodology/approach
This paper first briefly introduces the functions and configuration of the intelligent CTC system. Some new servers, terminals and interfaces are introduced, which are plan adjustment server/terminal, interface for automatic train operation (ATO), interface for Dynamic Monitoring System of Train Control Equipment (DMS), interface for Power Supervisory Control and Data Acquisition (PSCADA), interface for Disaster Monitoring, etc.
Findings
The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans, safety control of train routes and commands, traffic information data platform, integrated simulation of traffic dispatching and ATO function. These technologies have been applied in the Beijing-Zhangjiakou HSR, which commenced operations at the end of 2019. Implementing these key intelligent functions has improved the train dispatching command capacity, ensured the safe operation of intelligent HSR, reduced the labor intensity of dispatching operators and enhanced the intelligence level of China's dispatching system.
Originality/value
This paper provides further challenges and research directions for the intelligent dispatching command of HSR. To achieve the objectives, new measures need to be conducted, including the development of advanced technologies for intelligent dispatching command, coping with new requirements with the development of China's railway signaling system, the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.
Details
Keywords
The Yangtze River Delta (YRD) has become the world’s most important container-export area in the world because of the huge growth of container volume from China. Shanghai, the…
Abstract
The Yangtze River Delta (YRD) has become the world’s most important container-export area in the world because of the huge growth of container volume from China. Shanghai, the gateway of the YRD, handles most of the cargoes. But the nature of river port has restricted its development, which forced China to built the Yangshan deepwater port to act as the mega hub in the region. In response to the emergence of the YRD and Yangshan, two traditionally transshipment centers in the region, Busan and Kaohsiung, have implemented strategies to in response to the emergence of YRD and Yangshan. This paper analyzes Busan’s and Kaohsiung’s strategies and tries to forecast the development of these ports. Research result shows Busan is aggressive and ambitious but that Kaohsiung has little chance of becoming the mega-hub in the region.
Details