Search results
1 – 1 of 1Ahm Shamsuzzoha, Sujan Piya and Mohammad Shamsuzzaman
This study aims to propose a method known as the fuzzy technique for order preference by similarity to ideal solution (fuzzy TOPSIS) for complex project selection in…
Abstract
Purpose
This study aims to propose a method known as the fuzzy technique for order preference by similarity to ideal solution (fuzzy TOPSIS) for complex project selection in organizations. To fulfill study objectives, the factors responsible for making a project complex are collected through literature review, which is then analyzed by fuzzy TOPSIS, based on three decision-makers’ opinions.
Design/methodology/approach
The selection of complex projects is a multi-criteria decision-making (MCDM) process for global organizations. Traditional procedures for selecting complex projects are not adequate due to the limitations of linguistic assessment. To crossover such limitation, this study proposes the fuzzy MCDM method to select complex projects in organizations.
Findings
A large-scale engine manufacturing company, engaged in the energy business, is studied to validate the suitability of the fuzzy TOPSIS method and rank eight projects of the case company based on project complexity. Out of these eight projects, the closeness coefficient of the most complex project is found to be 0.817 and that of the least complex project is found to be 0.274. Finally, study outcomes are concluded in the conclusion section, along with study limitations and future works.
Research limitations/implications
The outcomes from this research may not be generalized sufficiently due to the subjectivity of the interviewers. The study outcomes support project managers to optimize their project selection processes, especially to select complex projects. The presented methodology can be used extensively used by the project planners/managers to find the driving factors related to project complexity.
Originality/value
The presented study deliberately explained how complex projects in an organization could be select efficiently. This selection methodology supports top management to maintain their proposed projects with optimum resource allocations and maximum productivity.
Details