The paper provides a detailed historical account of Douglass C. North's early intellectual contributions and analytical developments in pursuing a Grand Theory for why some…
Abstract
Purpose
The paper provides a detailed historical account of Douglass C. North's early intellectual contributions and analytical developments in pursuing a Grand Theory for why some countries are rich and others poor.
Design/methodology/approach
The author approaches the discussion using a theoretical and historical reconstruction based on published and unpublished materials.
Findings
The systematic, continuous and profound attempt to answer the Smithian social coordination problem shaped North's journey from being a young serious Marxist to becoming one of the founders of New Institutional Economics. In the process, he was converted in the early 1950s into a rigid neoclassical economist, being one of the leaders in promoting New Economic History. The success of the cliometric revolution exposed the frailties of the movement itself, namely, the limitations of neoclassical economic theory to explain economic growth and social change. Incorporating transaction costs, the institutional framework in which property rights and contracts are measured, defined and enforced assumes a prominent role in explaining economic performance.
Originality/value
In the early 1970s, North adopted a naive theory of institutions and property rights still grounded in neoclassical assumptions. Institutional and organizational analysis is modeled as a social maximizing efficient equilibrium outcome. However, the increasing tension between the neoclassical theoretical apparatus and its failure to account for contrasting political and institutional structures, diverging economic paths and social change propelled the modification of its assumptions and progressive conceptual innovation. In the later 1970s and early 1980s, North abandoned the efficiency view and gradually became more critical of the objective rationality postulate. In this intellectual movement, North's avant-garde research program contributed significantly to the creation of New Institutional Economics.
Details
Keywords
Edmund Baffoe-Twum, Eric Asa and Bright Awuku
Background: The annual average daily traffic (AADT) data from road segments are critical for roadway projects, especially with the decision-making processes about operations…
Abstract
Background: The annual average daily traffic (AADT) data from road segments are critical for roadway projects, especially with the decision-making processes about operations, travel demand, safety-performance evaluation, and maintenance. Regular updates help to determine traffic patterns for decision-making. Unfortunately, the luxury of having permanent recorders on all road segments, especially low-volume roads, is virtually impossible. Consequently, insufficient AADT information is acquired for planning and new developments. A growing number of statistical, mathematical, and machine-learning algorithms have helped estimate AADT data values accurately, to some extent, at both sampled and unsampled locations on low-volume roadways. In some cases, roads with no representative AADT data are resolved with information from roadways with similar traffic patterns.
Methods: This study adopted an integrative approach with a combined systematic literature review (SLR) and meta-analysis (MA) to identify and to evaluate the performance, the sources of error, and possible advantages and disadvantages of the techniques utilized most for estimating AADT data. As a result, an SLR of various peer-reviewed articles and reports was completed to answer four research questions.
Results: The study showed that the most frequent techniques utilized to estimate AADT data on low-volume roadways were regression, artificial neural-network techniques, travel-demand models, the traditional factor approach, and spatial interpolation techniques. These AADT data-estimating methods' performance was subjected to meta-analysis. Three studies were completed: R squared, root means square error, and mean absolute percentage error. The meta-analysis results indicated a mixed summary effect: 1. all studies were equal; 2. all studies were not comparable. However, the integrated qualitative and quantitative approach indicated that spatial-interpolation (Kriging) methods outperformed the others.
Conclusions: Spatial-interpolation methods may be selected over others to generate accurate AADT data by practitioners at all levels for decision making. Besides, the resulting cross-validation statistics give statistics like the other methods' performance measures.