On 20 March 2020, the four adult convicts of the 2012 Delhi rape case were executed after a long debate regarding the punishment for their crime. The Delhi rape case, unlike…
Abstract
On 20 March 2020, the four adult convicts of the 2012 Delhi rape case were executed after a long debate regarding the punishment for their crime. The Delhi rape case, unlike others, was also given to the fast track court because of the worldwide outrage India received in its aftermath. Otherwise, most rape survivors rarely speak out and if they do, their lives are often endangered and threatened, depending on the severity of the case itself and the perpetrator's rank in the society. Through the analysis of Aniruddha Roy Chowdhury's, 2016 film Pink, and Ajay Bahl's film Section 375 (2019), this chapter explores the different ways in which mainstream Hindi cinema deals with such questions, especially in its depictions of courts. Both these films foreground India's contemporary cultural systems of fear that silence the rape survivors. They also imply that in the court cases, unless the specific court case faces intense global publicity, as was the case of the Delhi gang rape, rape survivors will never want to speak out. Moreover, the rape survivors will also hesitate to file a First Information Report (FIR) – a document that records crimes by the police against their perpetrators – limiting any possibility for justice for them. The laws surrounding rape cases are obscure and complex and finding justice for a rape victim (unless it is on a global level) is not an easy venture in India. At the time of the #metoo movement, the rape laws in India are not designed in such a way to arguably encourage victim-survivors to speak up. Instead, if rape survivors do decide to confront their perpetrators, they not only face ostracisation from society but also the danger of losing loved ones and endanger their lives as well.
Details
Keywords
Shruti Garg, Rahul Kumar Patro, Soumyajit Behera, Neha Prerna Tigga and Ranjita Pandey
The purpose of this study is to propose an alternative efficient 3D emotion recognition model for variable-length electroencephalogram (EEG) data.
Abstract
Purpose
The purpose of this study is to propose an alternative efficient 3D emotion recognition model for variable-length electroencephalogram (EEG) data.
Design/methodology/approach
Classical AMIGOS data set which comprises of multimodal records of varying lengths on mood, personality and other physiological aspects on emotional response is used for empirical assessment of the proposed overlapping sliding window (OSW) modelling framework. Two features are extracted using Fourier and Wavelet transforms: normalised band power (NBP) and normalised wavelet energy (NWE), respectively. The arousal, valence and dominance (AVD) emotions are predicted using one-dimension (1D) and two-dimensional (2D) convolution neural network (CNN) for both single and combined features.
Findings
The two-dimensional convolution neural network (2D CNN) outcomes on EEG signals of AMIGOS data set are observed to yield the highest accuracy, that is 96.63%, 95.87% and 96.30% for AVD, respectively, which is evidenced to be at least 6% higher as compared to the other available competitive approaches.
Originality/value
The present work is focussed on the less explored, complex AMIGOS (2018) data set which is imbalanced and of variable length. EEG emotion recognition-based work is widely available on simpler data sets. The following are the challenges of the AMIGOS data set addressed in the present work: handling of tensor form data; proposing an efficient method for generating sufficient equal-length samples corresponding to imbalanced and variable-length data.; selecting a suitable machine learning/deep learning model; improving the accuracy of the applied model.
Details
Keywords
Marko Kureljusic and Erik Karger
Accounting information systems are mainly rule-based, and data are usually available and well-structured. However, many accounting systems are yet to catch up with current…
Abstract
Purpose
Accounting information systems are mainly rule-based, and data are usually available and well-structured. However, many accounting systems are yet to catch up with current technological developments. Thus, artificial intelligence (AI) in financial accounting is often applied only in pilot projects. Using AI-based forecasts in accounting enables proactive management and detailed analysis. However, thus far, there is little knowledge about which prediction models have already been evaluated for accounting problems. Given this lack of research, our study aims to summarize existing findings on how AI is used for forecasting purposes in financial accounting. Therefore, the authors aim to provide a comprehensive overview and agenda for future researchers to gain more generalizable knowledge.
Design/methodology/approach
The authors identify existing research on AI-based forecasting in financial accounting by conducting a systematic literature review. For this purpose, the authors used Scopus and Web of Science as scientific databases. The data collection resulted in a final sample size of 47 studies. These studies were analyzed regarding their forecasting purpose, sample size, period and applied machine learning algorithms.
Findings
The authors identified three application areas and presented details regarding the accuracy and AI methods used. Our findings show that sociotechnical and generalizable knowledge is still missing. Therefore, the authors also develop an open research agenda that future researchers can address to enable the more frequent and efficient use of AI-based forecasts in financial accounting.
Research limitations/implications
Owing to the rapid development of AI algorithms, our results can only provide an overview of the current state of research. Therefore, it is likely that new AI algorithms will be applied, which have not yet been covered in existing research. However, interested researchers can use our findings and future research agenda to develop this field further.
Practical implications
Given the high relevance of AI in financial accounting, our results have several implications and potential benefits for practitioners. First, the authors provide an overview of AI algorithms used in different accounting use cases. Based on this overview, companies can evaluate the AI algorithms that are most suitable for their practical needs. Second, practitioners can use our results as a benchmark of what prediction accuracy is achievable and should strive for. Finally, our study identified several blind spots in the research, such as ensuring employee acceptance of machine learning algorithms in companies. However, companies should consider this to implement AI in financial accounting successfully.
Originality/value
To the best of our knowledge, no study has yet been conducted that provided a comprehensive overview of AI-based forecasting in financial accounting. Given the high potential of AI in accounting, the authors aimed to bridge this research gap. Moreover, our cross-application view provides general insights into the superiority of specific algorithms.