Xiaojie Xu and Yun Zhang
Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present…
Abstract
Purpose
Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present study, the authors assess the forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January 10, 2020 period.
Design/methodology/approach
The authors employ the nonlinear auto-regressive neural network as the forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden neurons and data splitting ratios in arriving at the final model.
Findings
The final model is relatively simple and leads to accurate and stable results. Particularly, it generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing, respectively.
Originality/value
Through the analysis, the study shows usefulness of the neural network technique for commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.
Details
Keywords
Junru Zhang, Yumeng Liu and Bo Yan
This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.
Abstract
Purpose
This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.
Design/methodology/approach
First, taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion, the critical buried depth of the large section tunnel was determined. Then, the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios, and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality (BQ) index of the rock for different rock classes. Finally, the influences of thickness-span ratio, groundwater, initial stress of rock and structural attitude factors were considered to obtain the corrected BQ, based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed. This evaluation method was then applied to Liuyuan Tunnel and Cimushan No. 2 Tunnel of Chongqing Urban Expressway for verification.
Findings
This study shows that under different rock classes, the tunnel safety factor is a strict power function of the thickness-span ratio, while a linear function of the BQ to some extent. It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.
Originality/value
The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability. The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.
Details
Keywords
At airport security checkpoints, baggage screening is aimed to prevent transportation of prohibited and potentially dangerous items. Observing the projection images generated by…
Abstract
Purpose
At airport security checkpoints, baggage screening is aimed to prevent transportation of prohibited and potentially dangerous items. Observing the projection images generated by X-rays scanner is a critical method. However, when multiple objects are stacked on top of each other, distinguishing objects only by a two-dimensional picture is difficult, which prompts the demand for more precise imaging technology to be investigated for use. Reconstructing from 2D X-ray images to 3D-computed tomography (CT) volumes is a reliable solution.
Design/methodology/approach
To more accurately distinguish the specific contour shape of items when stacked, multi-information fusion network (MFCT-GAN) based on generative adversarial network (GAN) and U-like network (U-NET) is proposed to reconstruct from two biplanar orthogonal X-ray projections into 3D CT volumes. The authors use three modules to enhance the reconstruction qualitative and quantitative effects, compared with the original network. The skip connection modification (SCM) and multi-channels residual dense block (MRDB) enable the network to extract more feature information and learn deeper with high efficiency; the introduction of subjective loss enables the network to focus on the structural similarity (SSIM) of images during training.
Findings
On account of the fusion of multiple information, MFCT-GAN can significantly improve the value of quantitative indexes and distinguish contour explicitly between different targets. In particular, SCM enables features more reasonable and accurate when expanded into three dimensions. The appliance of MRDB can alleviate problem of slow optimization during the late training period, as well as reduce the computational cost. The introduction of subjective loss guides network to retain more high-frequency information, which makes the rendered CT volumes clearer in details.
Originality/value
The authors' proposed MFCT-GAN is able to restore the 3D shapes of different objects greatly based on biplanar projections. This is helpful in security check places, where X-ray images of stacked objects need to be distinguished from the presence of prohibited objects. The authors adopt three new modules, SCM, MRDB and subjective loss, as well as analyze the role the modules play in 3D reconstruction. Results show a significant improvement on the reconstruction both in objective and subjective effects.
Details
Keywords
Steven Davies, Gareth Reginald Terrence White, Anthony Samuel and Helen Martin
Covid-19 has caused many businesses to rethink their short- and potentially long-term workforce operations. The use of lateral flow serology can provide a clinically convenient…
Abstract
Purpose
Covid-19 has caused many businesses to rethink their short- and potentially long-term workforce operations. The use of lateral flow serology can provide a clinically convenient approach for the assessment of prior infection with Covid-19. However, its widespread adoption in organisations seeking to use it to test for workforce immunity is controversial and confusing. This paper aims to explore the paradoxical dilemmas and dialectics immunity workforce testing creates.
Design/methodology/approach
This study involved capturing the ethnographical participation of a chief executive officer (CEO) dealing with the experience of managing the outcomes of Covid-19 workforce immunity testing. The aim was to take a snapshot in time of the CEO's empirical world, capturing their lived experiences to explore how management actions resulting from Covid-19 immunity testing can played out.
Findings
Providing staff with immunity tests at first glance appears sensible, decent and a caring action to take. Nevertheless, once such knowledge is personalised by employees, they can, through dialectic dialogue, feel disadvantaged and harbour feelings of unfairness. Subsequently, this paper suggests that immunity testing may only serve to raise awareness and deepen the original management dilemma of whether testing is a worthwhile activity.
Originality/value
This paper aims to be amongst the first works to empirically explore the workforce management challenges that arise within small businesses within the service sector following the completion of Covid-19 immunity testing of their staff. It seeks to achieve this via utilising the robust theoretical framework of the paradox theory to examine Covid-19's impact upon small business workforce management thinking and practice.
Details
Keywords
Yang Li, Zhicheng Zheng, Yaochen Qin, Haifeng Tian, Zhixiang Xie and Peijun Rong
Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in…
Abstract
Purpose
Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in environmentally sensitive areas of China (ESAC). However, the phases and periodicity of drought changes in the ESAC remain largely unknown. Thus, this paper aims to identify the periodic characteristics of meteorological drought changes.
Design/methodology/approach
The potential evapotranspiration was calculated using the Penman–Monteith formula recommended by the Food and Agriculture Organization of the United Nations, whereas the standardized precipitation evaporation index (SPEI) of drought was simulated by coupling precipitation data. Subsequently, the Bernaola-Galvan segmentation algorithm was proposed to divide the periods of drought change and the newly developed extreme-point symmetric mode decomposition to analyze the periodic drought patterns.
Findings
The findings reveal a significant increase in SPEI in the ESAC, with the rate of decline in drought events higher in the ESAC than in China, indicating a more pronounced wetting trend in the study area. Spatially, the northeast region showed an evident drying trend, whereas the southwest region showed a wetting trend. Two abrupt changes in the drought pattern were observed during the study period, namely, in 1965 and 1983. The spatial instability of moderate or severe drought frequency and intensity on a seasonal scale was more consistent during 1966–1983 and 1984–2018, compared to 1961–1965. Drought variation was predominantly influenced by interannual oscillations, with the periods of the components of intrinsic mode functions 1 (IMF1) and 2 (IMF2) being 3.1 and 7.3 years, respectively. Their cumulative variance contribution rate reached 70.22%.
Research limitations/implications
The trend decomposition and periods of droughts in the study area were analyzed, which may provide an important scientific reference for water resource management and agricultural production activities in the ESAC. However, several problems remain unaddressed. First, the SPEI considers only precipitation and evapotranspiration, making it extremely sensitive to temperature increases. It also ignores the nonstationary nature of the hydrometeorological water process; therefore, it is prone to bias in drought detection and may overestimate the intensity and duration of droughts. Therefore, further studies on the application and comparison of various drought indices should be conducted to develop a more effective meteorological drought index. Second, the local water budget is mainly affected by surface evapotranspiration and precipitation. Evapotranspiration is calculated by various methods that provide different results. Therefore, future studies need to explore both the advantages and disadvantages of various evapotranspiration calculation methods (e.g. Hargreaves, Thornthwaite and Penman–Monteith) and their application scenarios. Third, this study focused on the temporal and spatial evolution and periodic characteristics of droughts, without considering the driving mechanisms behind them and their impact on the ecosystem. In future, it will be necessary to focus on a sensitivity analysis of drought indices with regard to climate change. Finally, although this study calculated the SPEI using meteorological data provided by China’s high-density observatory network, deviations and uncertainties were inevitable in the point-to-grid spatialization process. This shortcoming may be avoided by using satellite remote sensing data with high spatiotemporal resolution in the future, which can allow pixel-scale monitoring and simulation of meteorological drought evolution.
Practical implications
Under the background of continuous global warming, the climate in arid and semiarid areas of China has shown a trend of warming and wetting. It means that the plant environment in this region is getting better. In the future, the project of afforestation and returning farmland to forest and grassland in this region can increase the planting proportion of water-loving tree species to obtain better ecological benefits. Meanwhile, this study found that in the relatively water-scarce regions of China, drought duration was dominated by interannual oscillations (3.1a and 7.3a). This suggests that governments and nongovernmental organizations in the region should pay attention to the short drought period in the ESAC when they carry out ecological restoration and protection projects such as the construction of forest reserves and high-quality farmland.
Originality/value
The findings enhance the understanding of the phasic and periodic characteristics of drought changes in the ESAC. Future studies on the stress effects of drought on crop yield may consider these effects to better reflect the agricultural response to meteorological drought and thus effectively improve the tolerance of agricultural activities to drought events.
Details
Keywords
Intuitionistic linguistic fuzzy information (ILFI), characterized by linguistic terms and intuitionistic fuzzy sets (IFSs), can easily express the fuzzy information in the process…
Abstract
Purpose
Intuitionistic linguistic fuzzy information (ILFI), characterized by linguistic terms and intuitionistic fuzzy sets (IFSs), can easily express the fuzzy information in the process of muticriteria decision making (MCDM) and muticriteria group decision making (MCGDM) problems. The purpose of this paper is to provide an overview of aggregation operators (AOs) and applications of ILFI.
Design/methodology/approach
First, some meaningful AOs for ILFI are summarized, and some extended MCDM approaches for intuitionistic uncertain linguistic variables (IULVs), such as extended TOPSIS, extended TODIM, extended VIKOR, are discussed. Then, the authors summarize and analyze the applications about the AOs of IULVs.
Findings
IULVs, characterized by linguistic terms and IFSs, can more detailed and comprehensively express the criteria values in the process of MCDM and MCGDM. Therefore, lots of researchers pay more and more attention to the MCDM or MCGDM methods with IULVs.
Originality/value
The authors summarize and analyze the applications about the AOs of IULVs Finally, the authors point out some possible directions for future research.
Details
Keywords
Wanru Xie, Yixin Zhao, Gang Zhao, Fei Yang, Zilong Wei and Jinzhao Liu
High-speed turnouts are more complex in structure and thus may cause abnormal vibration of high-speed train car body, affecting driving safety and passenger riding experience…
Abstract
Purpose
High-speed turnouts are more complex in structure and thus may cause abnormal vibration of high-speed train car body, affecting driving safety and passenger riding experience. Therefore, it is necessary to analyze the data characteristics of continuous hunting of high-speed trains passing through turnouts and propose a diagnostic method for engineering applications.
Design/methodology/approach
First, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is performed to determine the first characteristic component of the car body’s lateral acceleration. Then, the Short-Time Fourier Transform (STFT) is performed to calculate the marginal spectra. Finally, the presence of a continuous hunting problem is determined based on the results of the comparison calculations and diagnostic thresholds. To improve computational efficiency, permutation entropy (PE) is used as a fast indicator to identify turnouts with potential problems.
Findings
Under continuous hunting conditions, the PE is less than 0.90; the ratio of the maximum peak value of the signal component to the original signal peak value exceeded 0.7, and there is an energy band in the STFT time-frequency map, which corresponds to a frequency distribution range of 1–2 Hz.
Originality/value
The research results have revealed the lateral vibration characteristics of the high-speed train’s car body during continuous hunting when passing through turnouts. On this basis, an effective diagnostic method has been proposed. With a focus on practical engineering applications, a rapid screening index for identifying potential issues has been proposed, significantly enhancing the efficiency of diagnostic processes.
Details
Keywords
Tangjian Wei, Xingqi Yang, Guangming Xu and Feng Shi
This paper aims to propose a medium-term forecast model for the daily passenger volume of High Speed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily…
Abstract
Purpose
This paper aims to propose a medium-term forecast model for the daily passenger volume of High Speed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume for multiple consecutive days (e.g. 120 days).
Design/methodology/approach
By analyzing the characteristics of the historical data on daily passenger volume of HSR systems, the date and holiday labels were designed with determined value ranges. In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double Layer Parallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of the daily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result by weighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of daily passenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume to ensure the accuracy of medium-term forecast.
Findings
According to the example application, in which the DLP-WNN model was used for the medium-term forecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the average absolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP) neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalized regression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for the medium-term forecast of the daily passenger volume of HSR.
Originality/value
This study proposed a Double Layer Parallel structure forecast model for medium-term daily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and Wavelet Neural Network. The predict results are important input data for supporting the line planning, scheduling and other decisions in operation and management in HSR systems.
Details
Keywords
Jingcheng Wen, Yihao Qin, Ye Bai and Xiaoqing Dong
Express freight transportation is in rapid development currently. Owing to the higher speed of express freight train, the deformation of the bridge deck worsens the railway line…
Abstract
Purpose
Express freight transportation is in rapid development currently. Owing to the higher speed of express freight train, the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge. Besides, the blunt car body of vehicle has poor aerodynamic characteristics, bringing a greater challenge on the running stability in the crosswind.
Design/methodology/approach
In this study, the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test. The dynamic model of the train-long-span steel truss bridge coupling system is established, and the dynamic response as well as the running safety of vehicle are evaluated.
Findings
The results show that wind speed has a significant influence on running safety, which is mainly reflected in the over-limitation of wheel unloading rate. The wind speed limit decreases with train speed, and it reduces to 18.83 m/s when the train speed is 160 km/h.
Originality/value
This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems. It also provides a new theoretical basis for the safety assessment of express freight trains.
Details
Keywords
Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia
The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…
Abstract
Purpose
The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.
Design/methodology/approach
The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.
Findings
The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.
Originality/value
The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.