Search results

1 – 10 of 24
Open Access
Article
Publication date: 27 November 2023

Yuehua Bao, Qiang Chen and Xingcan Xia

The purpose of this paper is to analyse the development and evolution of industrial innovation ecosystems of Around-Tongji Knowledge Economy Circle from the three levels mentioned…

Abstract

Purpose

The purpose of this paper is to analyse the development and evolution of industrial innovation ecosystems of Around-Tongji Knowledge Economy Circle from the three levels mentioned above, focusing on knowledge-producing populations, core populations and service-supporting populations, and to further develop this research framework by combining with the latest developments.

Design/methodology/approach

Based on the five-helix theory and economic census statistical data, this paper adopts geographic information system technology and examines the characteristics of the industrial innovation ecosystem and the synergistic evolution process in Around-Tongji knowledge economy circle.

Findings

The knowledge product populations lead the development of industries in Around-Tongji Knowledge Economy Circle. It contributes political capital output for the government. It innovates community cooperation and governance mode, and it improves the natural ecological environment. In the face of the changes and challenges in the development environment, the future development must be recognised from the height of the iterative development of the interaction mode between university knowledge production and economic and social development.

Originality/value

Based on the five-helix theory and economic census statistical data, this paper examines the characteristics of the industrial innovation ecosystem and the synergistic evolution process in Around-Tongji Knowledge Economy Circle. It further expands the research framework used to develop a synergistic evolution model, which reveals the interactive and synergistic relationship among the populations and the evolution characteristics of the entire industrial innovation ecosystem. This paper also provides useful perspectives for the study of the industrial innovation ecosystem.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 18 no. 1
Type: Research Article
ISSN: 2071-1395

Keywords

Open Access
Article
Publication date: 21 March 2023

Shilei Wang, Zhan Peng, Guixian Liu, Weile Qiang and Chi Zhang

In this paper, a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks, respectively, for a quantitative…

Abstract

Purpose

In this paper, a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks, respectively, for a quantitative evaluation of the condition of railway ballast bed.

Design/methodology/approach

Based on original radar signals, the time–frequency characteristics of radar signals were analyzed, five ballast bed condition characteristic indexes were proposed, including the frequency domain integral area, scanning area, number of intersections with the time axis, number of time-domain inflection points and amplitude envelope obtained by Hilbert transform, and the effectiveness and sensitivity of the indexes were analyzed.

Findings

The thickness of ballast bed tested at the sleep bottom by high-frequency radar is up to 55 cm, which meets the requirements of ballast bed detection. Compared with clean ballast bed, the values of the five indexes of fouled ballast bed are larger, and the five indexes could effectively show the condition of the ballast bed. The computational efficiency of amplitude envelope obtained by Hilbert transform is 140 s·km−1, and the computational efficiency of other indexes is 5 s·km−1. The amplitude envelopes obtained by Hilbert transform in the subgrade sections and tunnel sections are the most sensitive, followed by scanning area. The number of intersections with the time axis in the bridge sections was the most sensitive, followed by the scanning area. The scanning area can adapt to different substructures such as subgrade, bridges and tunnels, with high comprehensive sensitivity.

Originality/value

The research can provide appropriate characteristic indexes from the high-frequency radar original signal to quantitatively evaluate ballast bed condition under different substructures.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 24 July 2023

Baojuan Ye, Shunying Zhao, Hohjin Im, Liluo Gan, Mingfan Liu, Xinqiang Wang and Qiang Yang

This study aims to examine how the initial ambiguity of COVID-19 contributed to tourists' intentions for visiting a once-viral outbreak site in the future.

Abstract

Purpose

This study aims to examine how the initial ambiguity of COVID-19 contributed to tourists' intentions for visiting a once-viral outbreak site in the future.

Design/methodology/approach

The present study (N = 248) used partial least-squares structural equation modeling (PLS-SEM) to examine whether perceptions of ambiguity and mismanagement of COVID-19 are indirectly related to intentions to travel to Wuhan in a post-pandemic world through perceptions of risk and tourism value. Further, whether the model effects differed as a function of individual safety orientation was examined.

Findings

Perceptions of COVID-19 risk and tourism value serially mediated the effects of perceived COVID-19 ambiguity on post-pandemic travel intentions. Safety orientation did not moderate any paths. Perceived risk was a negative direct correlate of post-pandemic travel intentions.

Originality/value

The current study's strength is rooted in its specific targeting of post-pandemic travel intentions to Wuhan—the first city to experience a widescale outbreak of COVID-19 and subsequent international stigma—compared to general travel inclinations.

Details

Journal of Tourism Futures, vol. 10 no. 2
Type: Research Article
ISSN: 2055-5911

Keywords

Open Access
Article
Publication date: 11 July 2024

Cancan Tang, Qiang Hou and Tianhui He

The management issues of this article, and the author is attempting to address these issues, are as follows: What is the optimal decision of each entity in the closed-loop supply…

Abstract

Purpose

The management issues of this article, and the author is attempting to address these issues, are as follows: What is the optimal decision of each entity in the closed-loop supply chain for the cascading utilization of power batteries under three government measures: no subsidies, subsidies and rewards and punishments? How do different measures affect the process of cascading the utilization of power batteries? Which measures will help incentivize cascading utilization and battery recycling efforts?

Design/methodology/approach

The paper uses game analysis methods to study the optimal decisions of various stakeholders in the supply chain under the conditions of subsidies, non-subsidies and reward and punishment policies. The impact of various parameters on the returns of game entities is tested through Matlab numerical simulation.

Findings

The analysis discovered that each party in the supply chain will see an increase in earnings if the government boosts trade-in subsidies, which means that the degree of recycling efforts of each entity will also increase; under the condition with subsidies, the recycling efforts and echelon utilization rates of each stakeholder are higher than those under the incentive and punishment measure. In terms of the power battery echelon’s closed-loop supply chain incentive, the subsidy policy exceeds the reward and punishment policy.

Originality/value

The article takes the perspective of differential games and considers the dynamic process of exchanging old for new, providing important value for the practice of using old for new behavior in the closed-loop supply chain of power battery cascading utilization.

Details

Modern Supply Chain Research and Applications, vol. 6 no. 3
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 31 July 2024

Jingcheng Wen, Yihao Qin, Ye Bai and Xiaoqing Dong

Express freight transportation is in rapid development currently. Owing to the higher speed of express freight train, the deformation of the bridge deck worsens the railway line…

Abstract

Purpose

Express freight transportation is in rapid development currently. Owing to the higher speed of express freight train, the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge. Besides, the blunt car body of vehicle has poor aerodynamic characteristics, bringing a greater challenge on the running stability in the crosswind.

Design/methodology/approach

In this study, the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test. The dynamic model of the train-long-span steel truss bridge coupling system is established, and the dynamic response as well as the running safety of vehicle are evaluated.

Findings

The results show that wind speed has a significant influence on running safety, which is mainly reflected in the over-limitation of wheel unloading rate. The wind speed limit decreases with train speed, and it reduces to 18.83 m/s when the train speed is 160 km/h.

Originality/value

This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems. It also provides a new theoretical basis for the safety assessment of express freight trains.

Details

Railway Sciences, vol. 3 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 24 November 2022

Zhou Shi, Jiachang Gu, Yongcong Zhou and Ying Zhang

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder…

Abstract

Purpose

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Design/methodology/approach

Based on the investigation and analysis of the development history, structure form, structural parameters, stress characteristics, shear connector stress state, force transmission mechanism, and fatigue performance, aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge, the development trend, research status, research results and existing problems are expounded.

Findings

The shear-compression composite joint has become the main form in practice, featuring shortened length and simplified structure. The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder. The reasonable thickness of the bearing plate is 40–70 mm. The calculation theory and simplified calculation formula of the overall bearing capacity, the nonuniformity and distribution laws of the shear connector, the force transferring ratio of steel and concrete components, the fatigue failure mechanism and structural parameters effects are the focus of the research study.

Originality/value

This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 19 May 2022

Wenhua Guo, Xinmin Hong and Chunxia Chen

This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation…

Abstract

Purpose

This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation and multi-body dynamics and put forward the speed threshold for safe running of train under different crosswind speeds.

Design/methodology/approach

The computational fluid dynamics method is adopted to simulate the aerodynamic force in the whole process of train passing each other by using dynamic grid technology. The dynamic model of vehicle-bridge coupling system is established considering the effects of aerodynamic force of train passing each other under crosswind, the dynamic response of train intersection on the bridge under crosswind is computed and the running safety of the train is evaluated.

Findings

The aerodynamic force of trains' intersection has little effects on the derailment factor, lateral wheel-rail force and vertical acceleration of train, but it increases the offload factor of train and significantly increases the lateral acceleration of train. The crosswind has a significant effect on increasing the derailment factor, lateral wheel-rail force and offload factor of train. The offload factor of train is the key factor to control the threshold of train speed. The impact of the aerodynamic force of trains' intersection on running safety cannot be ignored. When the extreme values of crosswind wind speed are 15 m·s−1, 20 m·s−1 and 25 m·s−1, respectively, the corresponding speed thresholds for safe running of train are 350 km·h−1, 275 km·h−1 and 200 km·h−1, respectively.

Originality/value

The research can provide a more precise numerical method to study the running safety of high-speed trains under the aerodynamic effect of trains passing each other on bridge in crosswind.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 1 July 2019

Li Xuemei, Yun Cao, Junjie Wang, Yaoguo Dang and Yin Kedong

Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey…

3526

Abstract

Purpose

Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey systems in marine economics is gaining importance. The purpose of this paper is to summarize and review literature on grey models, providing new directions in their application in the marine economy.

Design/methodology/approach

This paper organized seminal studies on grey systems published by Chinese core journal database – CNKI, Web of Science and Elsevier from 1982 to 2018. After searching the aforementioned database for the said duration, the authors used the CiteSpace visualization tools to analyze them.

Findings

The authors sorted the studies according to their countries/regions, institutions, keywords and categories using the CiteSpace tool; analyzed current research characteristics on grey models; and discussed their possible applications in marine businesses, economy, scientific research and education, marine environment and disasters. Finally, the authors pointed out the development trend of grey models.

Originality/value

Although researches are combining grey theory with fractals, neural networks, fuzzy theory and other methods, the applications, in terms of scope, have still not met the demand. With the increasingly in-depth research in marine economics and management, international marine economic research has entered a new period of development. Grey theory will certainly attract scholars’ attention, and its role in marine economy and management will gain considerable significance.

Details

Marine Economics and Management, vol. 2 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 6 March 2023

Qiang Yang, Jiale Huo, Hongxiu Li, Yue Xi and Yong Liu

This study investigates how social interaction-oriented content in broadcasters' live speech affects broadcast viewers' purchasing and gift-giving behaviors and how broadcaster…

10196

Abstract

Purpose

This study investigates how social interaction-oriented content in broadcasters' live speech affects broadcast viewers' purchasing and gift-giving behaviors and how broadcaster popularity moderates social interaction-oriented content's effect on the two different behaviors in live-streaming commerce.

Design/methodology/approach

A research model was proposed and empirically tested using a panel data set collected from 537 live streams via Douyin (the Chinese version of TikTok), one of the most popular live broadcast platforms in China. A fixed-effects negative binomial regression model was used to examine the proposed research model.

Findings

This study's results show that social interaction-oriented content in broadcasters' live speech has an inverted U-shaped relationship with broadcast viewers' purchasing behavior and shares a positive linear relationship with viewers' gift-giving behavior. Furthermore, broadcaster popularity significantly moderates the effect of social interaction-oriented content on viewers' purchasing and gift-giving behaviors.

Originality/value

This research enriches the literature on live-streaming commerce by investigating how social interaction-oriented content in broadcasters' live speech affects broadcast viewers' product-purchasing and gift-giving behaviors from the perspective of broadcast viewers' attention. Moreover, this study provides some practical guidelines for developing live speech content in the live-streaming commerce context.

Details

Internet Research, vol. 33 no. 7
Type: Research Article
ISSN: 1066-2243

Keywords

Open Access
Article
Publication date: 25 July 2023

Mohammed A. Alsanad

The present study focused on examining the effect of treated wastewater (TWW) on soil chemical properties. Also, efforts were made to compare the soil chemical properties under…

Abstract

Purpose

The present study focused on examining the effect of treated wastewater (TWW) on soil chemical properties. Also, efforts were made to compare the soil chemical properties under TWW irrigation with that under groundwater (GW).

Design/methodology/approach

During the years 2021 and 2022, surface and subsurface soil samples were randomly collected in triplicate by using an auger fortnightly at two depths (20 and 40 cm) from the selected spot areas to represent the different types of irrigation water sources: TWW and GW. Samples of the GW and the TWW were collected for analysis.

Findings

This study examines the impact of TWW on soil characteristics and the surrounding environment. TWW use enhances soil organic matter, nutrient availability and salt redistribution, while reducing calcium carbonate accumulation in the topsoil. However, it negatively affects soil pH, electrical conductivity and sodium adsorption ratio, although remaining within acceptable limits. Generally, irrigating with TWW improves most soil chemical properties compared to GW.

Originality/value

In general, almost all of the soil’s chemical properties were improved by irrigating with TWW rather than GW. Following that, wastewater is used to irrigate the soil. Additionally, the application of gypsum to control the K/Na and Ca/Na ratios should be considered under long-term TWW and GW usage in this study area in order to control the salt accumulation as well as prevent soil conversion to saline-sodic soil in the future. However, more research is needed to thoroughly investigate the long-term effects of using TWW on soil properties as well as heavy metal accumulation in soil.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 3
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 10 of 24