Search results

1 – 1 of 1
Open Access
Article
Publication date: 12 June 2017

Nara Rossetti, Marcelo Seido Nagano and Jorge Luis Faria Meirelles

This paper aims to analyse the volatility of the fixed income market from 11 countries (Brazil, Russia, India, China, South Africa, Argentina, Chile, Mexico, USA, Germany and…

2177

Abstract

Purpose

This paper aims to analyse the volatility of the fixed income market from 11 countries (Brazil, Russia, India, China, South Africa, Argentina, Chile, Mexico, USA, Germany and Japan) from January 2000 to December 2011 by examining the interbank interest rates from each market.

Design/methodology/approach

To the volatility of interest rates returns, the study used models of auto-regressive conditional heteroscedasticity, autoregressive conditional heteroscedasticity (ARCH), generalized autoregressive conditional heteroscedasticity (GARCH), exponential generalized autoregressive conditional heteroscedasticity (EGARCH), threshold generalized autoregressive conditional heteroscedasticity (TGARCH) and periodic generalized autoregressive conditional heteroscedasticity (PGARCH), and a combination of these with autoregressive integrated moving average (ARIMA) models, checking which of these processes were more efficient in capturing volatility of interest rates of each of the sample countries.

Findings

The results suggest that for most markets, studied volatility is best modelled by asymmetric GARCH processes – in this case the EGARCH – demonstrating that bad news leads to a higher increase in the volatility of these markets than good news. In addition, the causes of increased volatility seem to be more associated with events occurring internally in each country, as changes in macroeconomic policies, than the overall external events.

Originality/value

It is expected that this study has contributed to a better understanding of the volatility of interest rates and the main factors affecting this market.

Propósito

Este estudio analiza la volatilidad del mercado de renta fija de once países (Brasil, Rusia, India, China, Sudáfrica, Argentina, Chile, México, Estados Unidos, Alemania y Japón) de enero de 2000 a diciembre de 2011, mediante el examen de las tasas de interés interbancarias de cada mercado.

Diseño/metodología/enfoque

Para la volatilidad de los retornos de las tasas de interés, se utilizaron modelos de heteroscedasticidad condicional autorregresiva: ARCH, GARCH, EGARCH, TGARCH y PGARCH, y una combinación de estos con modelos ARIMA, comprobando cuáles de los procesos eran más eficientes para capturar la volatilidad de interés de cada uno de los países de la muestra.

Hallazgos

Los resultados sugieren que para la mayoría de los mercados estudiados la volatilidad es mejor modelada por procesos GARCH asimétricos —en este caso el EGARCH— demostrando que las malas noticias conducen a un mayor incremento en la volatilidad de estos mercados que las buenas noticias. Además, las causas de una mayor volatilidad parecen estar más asociadas a eventos que ocurren internamente en cada país, como cambios en las políticas macroeconómicas, que los eventos externos generales.

Originalidad/valor

Se espera que este estudio contribuya a un mejor entendimiento de la volatilidad de las tasas de interés y de los principales factores que afectan a este mercado.

Palabras clave

Ingreso fijo, Volatilidad, Países emergentes, Modelos ARCH-GARCH

Tipo de artículo

Artículo de investigación

Details

Journal of Economics, Finance and Administrative Science, vol. 22 no. 42
Type: Research Article
ISSN: 2077-1886

Keywords

Access

Only Open Access

Year

Content type

1 – 1 of 1