Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 16 August 2019

Zheng Zhao and Yali Wen

The purpose of this paper is to measure the influence factors of their preferences for urban forest, marginal values of various properties and relative values of different scheme…

586

Abstract

Purpose

The purpose of this paper is to measure the influence factors of their preferences for urban forest, marginal values of various properties and relative values of different scheme portfolios, thus arriving indirectly at the city residents’ demand for urban forest improvement.

Design/methodology/approach

This paper, based on the data from the 2015–2017 field survey questionnaire of city residents over the radius of Beijing’s 5th Ring Road, uses the choice experiment method (CEM) to conduct a study of its residents’ demand for urban forest.

Findings

Beijing’s city residents are generally inclined to accept a relatively low payment of urban forest while hoping to access a relatively high urban afforestation coverage with the construction of relatively many city parks, especially focusing on the specialized park management; the marginal values of biodiversity and greenery coverage are far higher than those of greenbelts in quantity and the maximum marginal value of biodiversity remains as high as RMB29.42, indicating that the city residents do not favor much the number of greenbelts over other aspects but they generally hope to achieve a higher greenery coverage and a richer biodiversity.

Research limitations/implications

Generally speaking, what Beijing City needs most is not continuing the increase in the number of greenbelts, but engaging in the rational retrofit of its existing greenbelts and optimizing its urban forest structure.

Originality/value

This paper may provide reference for determining the city residents’ payment criteria for urban forest and will be of equally great significance to developing cities and their urban forest.

Details

Forestry Economics Review, vol. 1 no. 1
Type: Research Article
ISSN: 2631-3030

Keywords

Available. Open Access. Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

484

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Available. Open Access. Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

1090

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Available. Open Access. Open Access
Article
Publication date: 13 October 2022

Marcin Myśliwiec, Ryszard Kisiel and Mirosław J. Kruszewski

The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties…

495

Abstract

Purpose

The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties (>5 MPa shear strength) and low thermal interface resistance (better than for SAC solders) are the goal of this research.

Design/methodology/approach

Mechanical and thermal properties of TIM joints between gold plated contacts of chip and substrate were investigated. Sintering technique based on Ag pastes was applied for purpose of this study. Performance properties were assessed by shear force tests and thermal measurements. Scanning electron microscopy was used for microstructural observations of cross-section of formed joints.

Findings

It was concluded that the best properties are achieved for pastes containing spherical Ag particles of dozens of micrometer size with flake shaped Ag particles of few micrometers size. Sintering temperature at 230°C and application of 1 MPa force on the chip during sintering gave the higher adhesion and the lowest thermal interface resistance.

Originality/value

The new material based on Ag paste containing mixtures of Ag particles of different size (form nanometer to dozens of microns) and shape (spherical, flake) suspended in resin was proposed. Joints prepared using sintering technique and Ag pastes at 230°C with applied pressure shows better mechanical and thermal than other TIM materials such as thermal grease, thermal gel or thermally conductive adhesive. Those material could enable electronic device operation at temperatures above 200°C, currently unavailable for Si-based power electronics.

Details

Microelectronics International, vol. 39 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Access

Only Open Access

Year

Content type

1 – 4 of 4
Per page
102050