Ao Li, Dingli Zhang, Zhenyu Sun, Jun Huang and Fei Dong
The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to…
Abstract
Purpose
The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to analyze distribution characteristics and the evolution law of excavation damage zone of surrounding rock based on microseismic monitoring data.
Design/methodology/approach
In situ test using microseismic monitoring technique is carried out in the large-span transition tunnel of Badaling Great Wall Station of Beijing-Zhangjiakou high-speed railway. An intelligent microseismic monitoring system is built with symmetry monitoring point layout both on the mountain surface and inside the tunnel to achieve three-dimensional and all-round monitoring results.
Findings
Microseismic events can be divided into high density area, medium density area and low density area according to the density distribution of microseismic events. The positions where the cumulative distribution frequencies of microseismic events are 60 and 80% are identified as the boundaries between high and medium density areas and between medium and low density areas, respectively. The high density area of microseismic events is regarded as the high excavation damage zone of surrounding rock, which is affected by the grade of surrounding rock and the span of tunnel. The prediction formulas for the depth of high excavation damage zone of surrounding rock at different tunnel positions are given considering these two parameters. The scale of the average moment magnitude parameters of microseismic events is adopted to describe the damage degree of surrounding rock. The strong positive correlation and multistage characteristics between the depth of excavation damage zone and deformation of surrounding rock are revealed. Based on the depth of high excavation damage zone of surrounding rock, the prestressed anchor cable (rod) is designed, and the safety of anchor cable (rod) design parameters is verified by the deformation results of surrounding rock.
Originality/value
The research provides a new method to predict the surrounding rock damage zone of large-span tunnel and also provides a reference basis for design parameters of prestressed anchor cable (rod).
Details
Keywords
Ying Liu, Chenggang Wang, Zeng Tang and Zhibiao Nan
The purpose of this paper is to examine the impacts of farmland renting-in on planted grain acreage.
Abstract
Purpose
The purpose of this paper is to examine the impacts of farmland renting-in on planted grain acreage.
Design/methodology/approach
A survey data of five counties were analyzed with the two-stage ordinary least squares model.
Findings
Households renting-in land trended to plant more maize, and the more land was rented by a household the more maize was planted, while wheat acreage showed non-response to farmland renting-in.
Practical implications
Overall, the analysis suggests that policy makers should be prepared for different changing trends of grain crop acreage across the nation as farmland transfer continues. Future research should pay attention to the effect of farmland transfer on agricultural productivity and rural household income growth.
Originality/value
As the Chinese Government is promoting larger-scale and more mechanized farms as a way of protecting grain security, it is important to understand whether farmland renting-in will reduce planted grain acreage. This study provides empirical evidence showing the answer to that question may differ across different regions and depend on the particular grain crop in question.
Details
Keywords
Shuanbao Yao, Dawei Chen and Sansan Ding
The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train, and the horizontal profile has a significant impact on the…
Abstract
Purpose
The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train, and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence, the study analyzes aerodynamic parameters with multi-objective optimization design.
Design/methodology/approach
The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics. Then the modified vehicle modeling function (VMF) parameterization method and surface discretization method are adopted for the parametric design of the nose. For the 12 key design parameters extracted, combined with computational fluid dynamics (CFD), support vector machine (SVR) model and multi-objective particle swarm optimization (MPSO) algorithm, the multi-objective aerodynamic optimization design of high-speed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint. The engineering improvement and wind tunnel test verification of the optimized shape are done.
Findings
Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train. The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.
Originality/value
Compared with the original shape, the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%, and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%, respectively, after adopting the optimized shape modified according to engineering design requirements.
Details
Keywords
Data breaches in the US healthcare sector have more than tripled in the last decade across all states. However, to this day, no established framework ranks all states from most to…
Abstract
Purpose
Data breaches in the US healthcare sector have more than tripled in the last decade across all states. However, to this day, no established framework ranks all states from most to least at risk for healthcare data breaches. This gap has led to a lack of proper risk identification and understanding of cyber environments at state levels.
Design/methodology/approach
Based on the security action cycle, the National Institute of Standards and Technology (NIST) cybersecurity framework, the risk-planning model, and the multicriteria decision-making (MCDM) literature, the paper offers an integrated multicriteria framework for prioritization in cybersecurity to address this lack and other prioritization issues in risk management in the field. The study used historical breach data between 2015 and 2021.
Findings
The findings showed that California, Texas, New York, Florida, Indiana, Pennsylvania, Massachusetts, Minnesota, Ohio, and Georgia are the states most at risk for healthcare data breaches.
Practical implications
The findings highlight each US state faces a different level of healthcare risk. The findings are informative for patients, crucial for privacy officers in understanding the nuances of their risk environment, and important for policy-makers who must grasp the grave disconnect between existing issues and legislative practices. Furthermore, the study suggests an association between positioning state risk and such factors as population and wealth, both avenues for future research.
Originality/value
Theoretically, the paper offers an integrated framework, whose basis in established security models in both academia and industry practice enables utilizing it in various prioritization scenarios in the field of cybersecurity. It further emphasizes the importance of risk identification and brings attention to different healthcare cybersecurity environments among the different US states.
Details
Keywords
This study aims to assess how ethical sales behaviour affects switching costs typology, mediated by trust and moderated by brand affiliation, monthly contributions and the number…
Abstract
Purpose
This study aims to assess how ethical sales behaviour affects switching costs typology, mediated by trust and moderated by brand affiliation, monthly contributions and the number of dependent beneficiaries in medical schemes in South Africa.
Design/methodology/approach
A quantitative study targeted a non-probability judgement sample of 250 main members of medical schemes, elicited near health-care facilities in South Africa’s Gauteng province. Data was collected in a face-to-face survey and analysed using structural equation modelling on AMOS version 29 and PROCESS procedure for Statistical Package of Social Science release 2.041.
Findings
The results show that ethical sales behaviour negatively affects trust and positively affects evaluation, monetary and personal relational loss costs. Trust positively affects personal relational loss costs, economic risk, evaluation, monetary and benefit loss costs. Moreover, trust mediates the effect of ethical sales behaviour on evaluation, monetary and personal relational loss costs. Finally, the number of dependent beneficiaries, monthly contributions and brand affiliation significantly moderate these interactions.
Originality/value
The paper validates the application of commitment-to-trust theory in mediating how the effects of the general theory of marketing ethics on switching costs typology differ according to the number of dependent beneficiaries, monthly contributions and brand affiliation with medical schemes.
Details
Keywords
Telma Mendes, Vítor Braga, Aldina Correia and Carina Silva
Drawing on the resource-based view (RBV) and knowledge-based view (KBV) theories, this study contributes to deepen the knowledge that corporate social responsibility (CSR) exerts…
Abstract
Purpose
Drawing on the resource-based view (RBV) and knowledge-based view (KBV) theories, this study contributes to deepen the knowledge that corporate social responsibility (CSR) exerts on firms' innovation, considering the role played by cooperation. The research also seeks to ascertain the factors that influence the development of business cooperation.
Design/methodology/approach
The database used is the Community Innovation Survey (CIS, 2014) applied in the European Union (EU) during the time period 2012–2014. A sample of 7083 Portuguese firms were analyzed through the partial least squares structural equation modeling (PLS-SEM).
Findings
The results suggest that CSR positively relates with firms' innovation, and business cooperation partially mediates this relationship. The outcomes also reveal that investing in certain types of innovation activities increases the firms' willingness to cooperate.
Originality/value
The findings contribute to encourage an open innovation strategy as an easy and effective way to cope with rapid trends and changes, since it demonstrates the complementary between innovation and cooperation, as sources of value creation. From a triple bottom line (TBL) perspective, it also highlights that CSR must include social, economic and environmental initiatives, and should be a part of the firms' innovation strategy. As a result, managers who intend to contribute for society in the long term should plan, monitor and manage all CSR dimensions.
Details
Keywords
Soo Min Shin, Song Soo Lim and Yongsung Cho
This study aimed to estimate the economic benefits of PM2.5 emission abatement by Red Pine, Pinus Koraiensis and Quercus, using a metering model analyzing the amount of PM2.5…
Abstract
Purpose
This study aimed to estimate the economic benefits of PM2.5 emission abatement by Red Pine, Pinus Koraiensis and Quercus, using a metering model analyzing the amount of PM2.5 absorption in Korea.
Design/methodology/approach
To estimate the economic effects of PM2.5 adsorptions by trees, the frequency of hospital visits resulting from respiratory and circulatory diseases was estimated using a Probit model based on the data from National Health and Nutrition Survey.
Findings
The results show that Quercus and Pinus Koraiensis absorb and eliminate the largest amount of PM2.5. Reducing 1 ton of PM2.5 emission through the planting of trees leads to lower incidences of respiratory and circulatory diseases equivalent to the amount of 95 million won. When the trees planted are 2-year-old Red Pine, Pinus Koraiensis and Quercus, the resulting economic benefits of the PM2.5 abatement would amount to 481 million won, 173 million won and 1,027 million won, respectively. If the trees are 80 years old, the economic benefits are estimated to be 73 billion won for Red Pine, 103 billion won for Pinus Koraiensis and 38 billion won for Quercus.
Research limitations/implications
One limitation of this study is that the weight of PM2.5 adsorbed by each leaf area entirely depended on the experimental results from a prior study and the values are likely to be different from those actually absorbed in natural surroundings. In addition, because of the lack of data from a domestic survey on the surface of leaf area or the reload flow rate of PM2.5, this study referred to data from foreign research. Unfortunately, this specific data may not reflect climatic and terrain characteristics specific to the target country. We used the annual wind speed to calculate the reload flow rate and elimination volume; however, the figures could be more accurate with hourly or daily climate variations. When estimating the health benefits of changes in PM2.5 emissions on respiratory and circulatory diseases, more segmented access to patients' hospital visits and hospital admissions are desirable. Finally, the study focused on the three major tree species of Korea, however, a more detailed study of PM2.5 reduction by various tree types is needed in the future.
Originality/value
This paper quantitatively assessed the amount of PM2.5 adsorption by each of the three tree species. Then, the economic benefits were calculated in terms of how much money would be saved on hospital visits thanks to the reduced PM2.5 levels and lower incidences of respiratory and circulatory system diseases. The net contribution of this study was to prove the trees' function of reducing PM2.5 as it relates to human health. We focused on the most common trees in Korea and compared them to provide new information on the species.
Details
Keywords
Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden
This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…
Abstract
Purpose
This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.
Design/methodology/approach
A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.
Findings
The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.
Originality/value
The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.
Details
Keywords
Isabel Sánchez García and Rafael Curras-Perez
The purpose of this paper is to study the drivers of service provider switching intention other than satisfaction and, additionally, analyse the moderating role of the type of…
Abstract
Purpose
The purpose of this paper is to study the drivers of service provider switching intention other than satisfaction and, additionally, analyse the moderating role of the type of service (utilitarian vs hedonic). Specifically, the authors study the effects of alternative attractiveness, post-purchase regret, anticipated regret and past switching behaviour.
Design/methodology/approach
A representative survey with 800 consumers of mobile phone services (utilitarian) and holiday destinations (hedonic) was carried out.
Findings
Satisfaction is not a significant antecedent of switching intention in the hedonic service and its effect is marginal in the utilitarian service. In the utilitarian service, the main predictor of switching intention is post-purchase regret, whereas in the hedonic service, the main determinants of switching intention are past switching behaviour and anticipated regret.
Originality/value
The main contribution of this study is the analysis of the determinants of provider switching behaviour that may explain abandonment by satisfied customers, to see if their influence is greater or smaller than that of satisfaction itself, which has been the most analysed variable. Furthermore, there are expected to be differences between utilitarian and hedonic services, an aspect which is also studied in this work.
Details
Keywords
Nadeem Ahmad, Sirajuddin Ahmed, Viola Vambol and Sergij Vambol
All those effluent streams having compromised characteristics pose negative effects on the environment either directly or indirectly. Health care facilities and hospitals also…
Abstract
Purpose
All those effluent streams having compromised characteristics pose negative effects on the environment either directly or indirectly. Health care facilities and hospitals also generate a large amount of effluent like other industries containing harmful and toxic pharmaceutical residual compounds due to uncontrolled use of drugs, besides others. The occurrence of antibiotic in the environment is of utmost concern due to development of resistant genes. These get mixed up with ground and surface water due to lack of proper treatment of hospital wastewater. The effect of pharmaceutical compounds on human society and ecosystem as a whole is quite obvious. There are no strict laws regarding discharge of hospital effluent in many countries. Contrary to this, the authors do not have appropriate treatment facilities and solution to solve day by day increasing complexity of this problem. Moreover, water discharged from different health facilities having variable concentration often gets mixed with municipal sewage, thus remains partially untreated even after passing from conventional treatment plants. The purpose of this paper is to highlight the occurrences and fate of such harmful compounds, need of proper effluent management system as well as conventionally adopted treatment technologies nowadays all around the globe. This mini-review would introduce the subject, the need of the study, the motivation for the study, aim, objectives of the research and methodology to be adopted for such a study.
Design/methodology/approach
Hospital effluents consisting of pathogens, fecal coliforms, Escherichia coli, etc, including phenols, detergents, toxic elements like cyanide and heavy metals such as copper (Cu), iron (Fe), gadolinium (Gd), nickel (Ni), platinum (Pt), among others are commonly detected nowadays. These unwanted compounds along with emerging pollutants are generally not being regulated before getting discharged caused and spread of diseases. Various chemical and biological characteristics of hospital effluents are assessed keeping in the view the threat posed to ecosystem. Several research studies have been done and few are ongoing to explore the different characteristics and compositions of these effluent streams in comparison so as to suggest the suitable conventional treatment techniques and ways to manage the problem. Several antibiotic groups such as ciprofloxacin, ofloxacin, sulfa pyridine, trimethoprim, metronidazole and their metabolites are reported in higher concentration in hospital effluent. The aquatic system also receives a high concentration of pharmaceutical residues more than 14,000 μg/L from treatment plants also and other surface water or even drinking water in Indian cities. Many rivers in southern parts of India receives treated water have detected high concentration drugs and its metabolites. As far as global constraints that need to be discussed, there are only selected pharmaceuticals compounds generally analyzed, issue regarding management and detection based on method of sampling, frequency of analysis and observation, spatial as well as temporal concentration of these concerned micropollutants, accuracy in detecting these compounds, reliability of results and predictions, prioritization and the method of treatment in use for such type of wastewater stream. The complexity of management and treatment as well need to be addressed with following issues at priority: composition and characterization of effluent, compatible and efficient treatment technology that needs to be adopted and the environment risk posed by them. The problem of drugs and its residues was not seen to be reported in latter part of 20th century, but it might be reported locally in some part of globe. This paper covers some aspect about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays various industries and monitoring the efficiencies of existing treatment systems. This mini-review would introduce the subject, the need, the motivation and objectives of the study and methodology can be adopted for such a study.
Findings
The compiled review gives a complete view about the types of antibiotics used in different health care facilities, their residue formation, occurrences in different ecosystems, types of regulations or laws available in different counties related to disposal, different type of treatment technologies, innovative combined treatment schemes and future action needed to tackle such type of effluent after its generation. The thesis also highlights the use of certain innovative materials use for the treatment like nanoparticles. It also discusses about the residues impact on the human health as well as their bioaccumulative nature. If the authors relate the past to the current scenario of pharmaceutical compounds (PhACs) in the environment, the authors will certainly notice that many diseases are nowadays not curable by simple previously prescribed Ab. Many research projects have been done in European countries that have shown the risk of such residues like Pills, Sibell, Poseidon, No pills, Neptune, Knappe, Endetech, etc. In the previous section, it was mentioned that there are no stringent laws for hospital wastewater and in many countries, they are mixed with domestic wastewater. Many difficulties are there with this research due to complex analysis, detection of targeted Ab, affecting waterbodies rate of flow, nature of treatment varies with season to season. The way nature is being degraded and harmful effect are being imposed, it is important to take immediate and decisive steps in this area. Wastewater treatment plants (WWTPs) serves as a nursery for antibiotic-resistant systems, hence monitoring with great attention is also needed. Many trials with different treatment process, in combination, were considered. Many countries are paying great attention to this topic by considering the severity of the risk involved in it.
Research limitations/implications
Previous studies by several scientists show that the pharmaceutical residues in the discharged effluent displayed direct toxic effects, and sometimes, detrimental effects in the mixture were also observed. The discharge of untreated effluent from hospitals and pharmaceuticals and personal care products in the natural ecosystem poses a significant threat to human beings. The pharmaceuticals, like antibiotics, in the aquatic environment, accelerate the development of the antibiotic-resistant genes in bacteria, which causes fatal health risks to animals and human beings. Others, like analgesics, are known to affect development in fishes. They also degrade the water quality and may lead to DNA damage, toxicity in lower organisms like daphnia and have the potential to bioaccumulate. A few commonly used nanoadsorbents for water and wastewater treatment along with their specific properties can also be used. The main advantages of them are high adsorption capacity and superior efficiency, their high reusability, synthesis at room temperatures, super magnetism, quantum confinement effect as well as eco-toxicity. This review will focus on the applicability of different nanoscale materials and their uses in treating wastewater polluted by organic and inorganic compounds, heavy metals, bacteria and viruses. Moreover, the use of various nanoadsorbents and nano-based filtration membranes is also examined.
Practical implications
A number of different pharmaceutical residues derived from various activities like production facilities, domestic use and hospitals have been reported earlier to be present in groundwater, effluents and rivers, they include antibiotics, psycho-actives, analgesics, illicit drugs, antihistamine, etc. In past few years environmental scientists are more concerned toward the effluents generated from medical care facilities, community health centers and hospitals. Various chemical and biological characteristics of hospital effluents have been assessed keeping in the view the common threats pose by them to the entire ecosystem. In this study, seven multispecialty hospitals with nonidentical pretreatment were selected for three aspects i.e. conventional wastewater characteristics, high priority pharmaceuticals and microbial analyses. The present work is to evaluate efficacy of advanced wastewater treatment methods with regard to removal of these three aspects from hospital effluents before discharge into a sewage treatment plant (STP). Based on test results, two out of seven treatment technologies, i.e. MBR and CW effectively reducing conventional parameters and pharmaceuticals from secondary and tertiary treatments except regeneration of microbes were observed in tertiary level by these two treatments.
Social implications
This review has aimed to identify the emerging contaminants, including pharmaceutical residues, highly consumed chemicals that are present in the hospital effluent, along with their physicochemical and biological characteristics. In this, the main objective was to review the occurrences and fate of common drugs and antibiotics present in effluents from hospital wastewaters. As far as global constraints that need to be discussed, there are only selected pharmaceuticals compounds generally analyzed, issue regarding management and detection based on method of sampling, frequency of analysis and observation, spatial as well as temporal concentration of these concerned micropollutants, accuracy in detecting these compounds, reliability of results and predictions, prioritization and the method of treatment in use for such type of wastewater stream are among the major issues (Akter et al., 2012; Ashfaq et al., 2016; García-Mateos et al., 2015; Liu et al., 2014; Mubedi et al., 2013; Prabhasankar et al., 2016; Sun et al., 2016; Suriyanon et al., 2015; Wang et al., 2016; Wen et al., 2004). This paper covers some aspect about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays.
Originality/value
This study many multispecialty hospitals with nonidentical pretreatment were selected for three aspects i.e. conventional wastewater characteristics high priority pharmaceuticals and microbial analyses. The present work is to evaluate efficacy of advanced wastewater treatment methods with regard to removal of these three aspects from hospital effluents before discharge into an STP. Based on test results, two out of different treatment effectively reducing conventional parameters and pharmaceuticals from secondary and tertiary treatments except regeneration of microbes were observed in the tertiary level by these two treatments were studies followed by ozonation and ultraviolet-ray treatment.