Shangkun Liang, Rong Fu and Yanfeng Jiang
Independent directors are important corporate decision participants and makers. Based on the Chinese cultural background, this paper interprets the listing order of independent…
Abstract
Purpose
Independent directors are important corporate decision participants and makers. Based on the Chinese cultural background, this paper interprets the listing order of independent directors as independent directors’ status, exploring their influence on the corporate research and development (R&D) behavior.
Design/methodology/approach
This paper studies A-share listed firms in China from 2008 to 2018 as the sample. The main method is ordinary least square (OLS) regression. We also use other methods to deal with endogenous problems, such as the firm fixed effect method, change model method, two-stage instrumental variable method, and Heckman two-stage method.
Findings
(1) Higher independent directors’ status attribute to more effective exertion of supervision and consultation function, and positively enhance the corporate R&D investment. The increase of the independent director’ status by one standard deviation will increase the R&D investment by 4.6%. (2) The above effect is more influential in firms with stronger traditional culture atmosphere, higher information opacity and higher performance volatility. (3) High-status independent directors promote R&D investment by improving the scientificity of R&D evaluation and reducing information asymmetry. (4) The enhancing effect of independent director’ status on R&D investment is positively associated with the firm’s patent output and market value.
Originality/value
This paper contributes to understanding the relationship between the independent directors’ status and their duty execution from an embedded cultural background perspective. The findings of the study enlighten the improvement of corporate governance efficiency and the healthy development of the capital market.
Details
Keywords
Paramita Ray and Amlan Chakrabarti
Social networks have changed the communication patterns significantly. Information available from different social networking sites can be well utilized for the analysis of users…
Abstract
Social networks have changed the communication patterns significantly. Information available from different social networking sites can be well utilized for the analysis of users opinion. Hence, the organizations would benefit through the development of a platform, which can analyze public sentiments in the social media about their products and services to provide a value addition in their business process. Over the last few years, deep learning is very popular in the areas of image classification, speech recognition, etc. However, research on the use of deep learning method in sentiment analysis is limited. It has been observed that in some cases the existing machine learning methods for sentiment analysis fail to extract some implicit aspects and might not be very useful. Therefore, we propose a deep learning approach for aspect extraction from text and analysis of users sentiment corresponding to the aspect. A seven layer deep convolutional neural network (CNN) is used to tag each aspect in the opinionated sentences. We have combined deep learning approach with a set of rule-based approach to improve the performance of aspect extraction method as well as sentiment scoring method. We have also tried to improve the existing rule-based approach of aspect extraction by aspect categorization with a predefined set of aspect categories using clustering method and compared our proposed method with some of the state-of-the-art methods. It has been observed that the overall accuracy of our proposed method is 0.87 while that of the other state-of-the-art methods like modified rule-based method and CNN are 0.75 and 0.80 respectively. The overall accuracy of our proposed method shows an increment of 7–12% from that of the state-of-the-art methods.