Search results
1 – 3 of 3The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by…
Abstract
Purpose
The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty.
Design/methodology/approach
A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied.
Findings
Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM.
Originality/value
The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.
Details
Keywords
Stjepan Frljić, Bojan Trkulja and Ana Drandić
The purpose of this paper is to present a methodology for calculating eddy current losses in the core of a single-phase power voltage transformer, which, unlike a standard power…
Abstract
Purpose
The purpose of this paper is to present a methodology for calculating eddy current losses in the core of a single-phase power voltage transformer, which, unlike a standard power transformer, has an open-type core (I-type core). In those apparatus, reduction of core losses is achieved by using a multipart open-type core that is created by merging a larger number of leaner cores.
Design/methodology/approach
3D FEM approach for calculation of eddy current losses in open-type cores based on a weak AλA formulation is presented. Method in which redundant degrees of freedom are eliminated is shown. This enables faster convergence of the simulation. The results are benchmarked using simulations with standard AVA formulation.
Findings
Results using weak AλA formulation with elimination of redundant degrees of freedom are in agreement with both simulation using only weak AλA formulation and with simulation based on AVA formulation.
Research limitations/implications
The presented methodology is valid in linear cases, whereas the nonlinear case will be part of future work.
Practical implications
Presented procedure can be used for the optimization when designing the open-type core of apparatus like power voltage transformers.
Originality/value
The presented method is specifically adapted for calculating eddy currents in the open-type core. The method is based on a weak formulation for the magnetic vector potential A and the current vector potential λ, incorporating numerical homogenization and a straightforward elimination of redundant degrees of freedom, resulting in faster convergence of the simulation.
Details
Keywords
Johann Wilhelm and Werner Renhart
The purpose of this paper is to investigate an alternative to established hysteresis models.
Abstract
Purpose
The purpose of this paper is to investigate an alternative to established hysteresis models.
Design/methodology/approach
Different mathematical representations of the magnetic hysteresis are compared and some differences are briefly discussed. After this, the application of the T(x) function is presented and an inductor model is developed. Implementation details of the used transient circuit simulator code are further discussed. From real measurement results, parameters for the model are extracted. The results of the final simulation are finally discussed and compared to measurements.
Findings
The T(x) function possesses a fast mathematical formulation with very good accuracy. It is shown that this formulation is very well suited for an implementation in transient circuit simulator codes. Simulation results using the developed model are in very good agreement with measurements.
Research limitations/implications
For the purpose of this paper, only soft magnetic materials were considered. However, literature suggests, that the T(x) function can be extended to hard magnetic materials. Investigations on this topic are considered as future work.
Originality/value
While the mathematical background of the T(x) function is very well presented in the referenced papers, the application in a model of a real device is not very well discussed yet. The presented paper is directly applicable to typical problems in the field of power electronics.
Details