Search results
1 – 2 of 2Guodong Sa, Zhengyang Jiang, Jiacheng Sun, Chan Qiu, Zhenyu Liu and Jianrong Tan
Real-time monitoring of the critical physical fields of core components in complex equipment is of great significance as it can predict potential failures, provide reasonable…
Abstract
Purpose
Real-time monitoring of the critical physical fields of core components in complex equipment is of great significance as it can predict potential failures, provide reasonable preventive maintenance strategies and thereby ensure the service performance of the equipment. This research aims to propose a hierarchical explicit–implicit combined sensing-based real-time monitoring method to achieve the sensing of critical physical field information of core components in complex equipment.
Design/methodology/approach
Sensor deployable and non-deployable areas are divided based on the dynamic and static constraints in actual service. An integrated method of measurement point layout and performance evaluation is used to optimize sensor placement, and an association mapping between information in non-deployable and deployable areas is established, achieving hierarchical explicit–implicit combined sensing of key sensor information for core components. Finally, the critical physical fields of core components are reconstructed and visualized.
Findings
The proposed method is applied to the spindle system of CNC machine tools, and the result shows that this method can effectively monitor the spindle system temperature field.
Originality/value
This research provides an effective method for monitoring the service performance of complex equipment, especially considering the dynamic and static constraints during the service process and detecting critical information in non-deployable areas.
Details
Keywords
James Olaonipekun Toyin and Modupe Cecilia Mewomo
The utilisation of building information modelling (BIM) technology is rapidly increasing among construction professionals across the world. Notwithstanding, recent studies…
Abstract
Purpose
The utilisation of building information modelling (BIM) technology is rapidly increasing among construction professionals across the world. Notwithstanding, recent studies revealed a low level of BIM implementation in the context of the Nigerian construction sector. Moreover, previous studies have established that BIM application comes with its share of various barriers. Therefore, this study aims to carry out an on-site survey on barriers to the application of BIM on construction sites in the Nigerian construction industry.
Design/methodology/approach
An extensive review of literature on BIM barriers was conducted, from where 33 factors were identified as significant BIM barriers peculiar to the developing countries. A questionnaire was developed and distributed to the targeted respondents, who are practicing professionals in the Nigerian construction industry, based on the identified barriers. The data collected were analysed by using both descriptive and inferential statistics.
Findings
The principal component analysis revealed that 27 barriers were peculiar to the Nigerian construction industry. The “lack of familiarity with BIM capacity, habitual resistance to change from the traditional style of design and build, and poor awareness of BIM benefit” were identified as the three most critical barriers hindering BIM application on construction sites in the Nigerian construction industry.
Practical implications
This study reveals key information on the peculiar barriers to BIM application in the Nigerian construction industry. The avoidance of these barriers will not only assist various construction stakeholders in the successful implementation of BIM application on a construction project but also promote information management systems and productivity within the construction industry to a great extent. These will further improve post-construction activities.
Originality/value
This study provides a substantial understanding of BIM state of the art in the context of barriers hindering BIM application on construction sites in the Nigerian construction industry.
Details