Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing
This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.
Abstract
Purpose
This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.
Design/methodology/approach
Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.
Findings
The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.
Originality/value
The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.
Details
Keywords
Dongbei Bai, Lei Ye, ZhengYuan Yang and Gang Wang
Global climate change characterized by an increase in temperature has become the focus of attention all over the world. China is a sensitive and significant area of global climate…
Abstract
Purpose
Global climate change characterized by an increase in temperature has become the focus of attention all over the world. China is a sensitive and significant area of global climate change. This paper specifically aims to examine the association between agricultural productivity and the climate change by using China’s provincial agricultural input–output data from 2000 to 2019 and the climatic data of the ground meteorological stations.
Design/methodology/approach
The authors used the three-stage spatial Durbin model (SDM) model and entropy method for analysis of collected data; further, the authors also empirically tested the climate change marginal effect on agricultural productivity by using ordinary least square and SDM approaches.
Findings
The results revealed that climate change has a significant negative effect on agricultural productivity, which showed significance in robustness tests, including index replacement, quantile regression and tail reduction. The results of this study also indicated that by subdividing the climatic factors, annual precipitation had no significant impact on the growth of agricultural productivity; further, other climatic variables, including wind speed and temperature, had a substantial adverse effect on agricultural productivity. The heterogeneity test showed that climatic changes ominously hinder agricultural productivity growth only in the western region of China, and in the eastern and central regions, climate change had no effect.
Practical implications
The findings of this study highlight the importance of various social connections of farm households in designing policies to improve their responses to climate change and expand land productivity in different regions. The study also provides a hypothetical approach to prioritize developing regions that need proper attention to improve crop productivity.
Originality/value
The paper explores the impact of climate change on agricultural productivity by using the climatic data of China. Empirical evidence previously missing in the body of knowledge will support governments and researchers to establish a mechanism to improve climate change mitigation tools in China.
Details
Keywords
Ji-Myong Kim, Sang-Guk Yum, Manik Das Adhikari and Junseo Bae
This study proposes a deep learning algorithm-based model to predict the repair and maintenance costs of apartment buildings, by collecting repair and maintenance cost data that…
Abstract
Purpose
This study proposes a deep learning algorithm-based model to predict the repair and maintenance costs of apartment buildings, by collecting repair and maintenance cost data that were incurred in an actual apartment complex. More specifically, a long short-term memory (LSTM) algorithm was adopted to develop the prediction model, while the robustness of the model was verified by recurrent neural networks (RNN) and gated recurrent units (GRU) models.
Design/methodology/approach
Repair and maintenance cost data incurred in actual apartment complexes is collected, along with various input variables, such as repair and maintenance timing (calendar year), usage types, building ages, temperature, precipitation, wind speed, humidity and solar radiation. Then, the LSTM algorithm is employed to predict the costs, while two other learning models (RNN and GRU) are taught to validate the robustness of the LSTM model based on R-squared values, mean absolute errors and root mean square errors.
Findings
The LSTM model’s learning is more accurate and reliable to predict repair and maintenance costs of apartment complex, compared to the RNN and GRU models’ learning performance. The proposed model provides a valuable tool that can contribute to mitigating financial management risks and reducing losses in forthcoming apartment construction projects.
Originality/value
Gathering a real-world high-quality data set of apartment’s repair and maintenance costs, this study provides a highly reliable prediction model that can respond to various scenarios to help apartment complex managers plan resources more efficiently, and manage the budget required for repair and maintenance more effectively.
Details
Keywords
Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda
This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…
Abstract
Purpose
This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.
Design/methodology/approach
Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.
Findings
The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.
Originality/value
This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.
Graphical abstract
Details
Keywords
Adela Sobotkova, Ross Deans Kristensen-McLachlan, Orla Mallon and Shawn Adrian Ross
This paper provides practical advice for archaeologists and heritage specialists wishing to use ML approaches to identify archaeological features in high-resolution satellite…
Abstract
Purpose
This paper provides practical advice for archaeologists and heritage specialists wishing to use ML approaches to identify archaeological features in high-resolution satellite imagery (or other remotely sensed data sources). We seek to balance the disproportionately optimistic literature related to the application of ML to archaeological prospection through a discussion of limitations, challenges and other difficulties. We further seek to raise awareness among researchers of the time, effort, expertise and resources necessary to implement ML successfully, so that they can make an informed choice between ML and manual inspection approaches.
Design/methodology/approach
Automated object detection has been the holy grail of archaeological remote sensing for the last two decades. Machine learning (ML) models have proven able to detect uniform features across a consistent background, but more variegated imagery remains a challenge. We set out to detect burial mounds in satellite imagery from a diverse landscape in Central Bulgaria using a pre-trained Convolutional Neural Network (CNN) plus additional but low-touch training to improve performance. Training was accomplished using MOUND/NOT MOUND cutouts, and the model assessed arbitrary tiles of the same size from the image. Results were assessed using field data.
Findings
Validation of results against field data showed that self-reported success rates were misleadingly high, and that the model was misidentifying most features. Setting an identification threshold at 60% probability, and noting that we used an approach where the CNN assessed tiles of a fixed size, tile-based false negative rates were 95–96%, false positive rates were 87–95% of tagged tiles, while true positives were only 5–13%. Counterintuitively, the model provided with training data selected for highly visible mounds (rather than all mounds) performed worse. Development of the model, meanwhile, required approximately 135 person-hours of work.
Research limitations/implications
Our attempt to deploy a pre-trained CNN demonstrates the limitations of this approach when it is used to detect varied features of different sizes within a heterogeneous landscape that contains confounding natural and modern features, such as roads, forests and field boundaries. The model has detected incidental features rather than the mounds themselves, making external validation with field data an essential part of CNN workflows. Correcting the model would require refining the training data as well as adopting different approaches to model choice and execution, raising the computational requirements beyond the level of most cultural heritage practitioners.
Practical implications
Improving the pre-trained model’s performance would require considerable time and resources, on top of the time already invested. The degree of manual intervention required – particularly around the subsetting and annotation of training data – is so significant that it raises the question of whether it would be more efficient to identify all of the mounds manually, either through brute-force inspection by experts or by crowdsourcing the analysis to trained – or even untrained – volunteers. Researchers and heritage specialists seeking efficient methods for extracting features from remotely sensed data should weigh the costs and benefits of ML versus manual approaches carefully.
Social implications
Our literature review indicates that use of artificial intelligence (AI) and ML approaches to archaeological prospection have grown exponentially in the past decade, approaching adoption levels associated with “crossing the chasm” from innovators and early adopters to the majority of researchers. The literature itself, however, is overwhelmingly positive, reflecting some combination of publication bias and a rhetoric of unconditional success. This paper presents the failure of a good-faith attempt to utilise these approaches as a counterbalance and cautionary tale to potential adopters of the technology. Early-majority adopters may find ML difficult to implement effectively in real-life scenarios.
Originality/value
Unlike many high-profile reports from well-funded projects, our paper represents a serious but modestly resourced attempt to apply an ML approach to archaeological remote sensing, using techniques like transfer learning that are promoted as solutions to time and cost problems associated with, e.g. annotating and manipulating training data. While the majority of articles uncritically promote ML, or only discuss how challenges were overcome, our paper investigates how – despite reasonable self-reported scores – the model failed to locate the target features when compared to field data. We also present time, expertise and resourcing requirements, a rarity in ML-for-archaeology publications.
Details
Keywords
Zhan Wang, Xiangzheng Deng and Gang Liu
The purpose of this paper is to show that the environmental income drives economic growth of a large open country.
Abstract
Purpose
The purpose of this paper is to show that the environmental income drives economic growth of a large open country.
Design/methodology/approach
The authors detect that the relative environmental income has double effect of “conspicuous consumption” on the international renewable resource stock changes when a new social norm shapes to environmental-friendly behaviors by using normal macroeconomic approaches.
Findings
Every unit of extra demand for renewable resource consumption increases the net premium of domestic capital asset. Even if the technology spillovers are inefficient to the substitution of capital to labor force in a real business cycle, the relative income with scale effect increases drives savings to investment. In this case, the renewable resource consumption promotes both the reproduction to a higher level and saving the potential cost of environmental improvement. Even if without scale effects, the loss of technology inefficient can be compensated by net positive consumption externality for economic growth in a sustainable manner.
Research limitations/implications
It implies how to earn the environment income determines the future pathway of China’s rural conversion to the era of eco-urbanization.
Originality/value
We test the tax incidence to demonstrate an experimental taxation for environmental improvement ultimately burdens on international consumption side.
Details
Keywords
Chunlan Li, Xinwu Xu, Hongyu Du, Debin Du, Walter Leal Filho, Jun Wang, Gang Bao, Xiaowen Ji, Shan Yin, Yuhai Bao and Hossein Azadi
The paper aims to investigate the possible changes in mean temperature in the Mongolian Plateau associated with the 1.5 and 2°C global warming targets and how snow changes in the…
Abstract
Purpose
The paper aims to investigate the possible changes in mean temperature in the Mongolian Plateau associated with the 1.5 and 2°C global warming targets and how snow changes in the Mongolian Plateau when the mean global warming is well below 2°C or limited to 1.5°C.
Design/methodology/approach
In total, 30 model simulations of consecutive temperature and precipitation days from Coupled Model Inter-comparison Project Phase 5 (CMIP5) are assessed in comparison with the 111 meteorological monitoring stations from 1961–2005. Multi-model ensemble and model relative error were used to evaluate the performance of CMIP5 models. Slope and the Mann–Kendall test were used to analyze the magnitude of the trends and evaluate the significance of trends of snow depth (SD) from 1981 to 2014 in the Mongolian Plateau.
Findings
Some models perform well, even better than the majority (80%) of the models over the Mongolian Plateau, particularly HadGEM2-CC, CMCC-CM, BNU-ESM and GFDL-ESM2M, which simulate best in consecutive dry days (CDD), consecutive wet days (CWD), cold spell duration indicator (CSDI) and warm spell duration indicator (WSDI), respectively. Emphasis zones of WSDI on SD were deeply analysed in the 1.5 and 2 °C global warming period above pre-industrial conditions, because it alone has a significant negative relation with SD among the four indices. It is warmer than before in the Mongolian Plateau, particularly in the southern part of the Mongolian Plateau, indicating less SD.
Originality/value
Providing climate extremes and SD data sets with different spatial-temporal scales over the Mongolian Plateau. Zoning SD potential risk areas and proposing adaptations to promote regional sustainable development.
Details
Keywords
Wanru Xie, Yixin Zhao, Gang Zhao, Fei Yang, Zilong Wei and Jinzhao Liu
High-speed turnouts are more complex in structure and thus may cause abnormal vibration of high-speed train car body, affecting driving safety and passenger riding experience…
Abstract
Purpose
High-speed turnouts are more complex in structure and thus may cause abnormal vibration of high-speed train car body, affecting driving safety and passenger riding experience. Therefore, it is necessary to analyze the data characteristics of continuous hunting of high-speed trains passing through turnouts and propose a diagnostic method for engineering applications.
Design/methodology/approach
First, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is performed to determine the first characteristic component of the car body’s lateral acceleration. Then, the Short-Time Fourier Transform (STFT) is performed to calculate the marginal spectra. Finally, the presence of a continuous hunting problem is determined based on the results of the comparison calculations and diagnostic thresholds. To improve computational efficiency, permutation entropy (PE) is used as a fast indicator to identify turnouts with potential problems.
Findings
Under continuous hunting conditions, the PE is less than 0.90; the ratio of the maximum peak value of the signal component to the original signal peak value exceeded 0.7, and there is an energy band in the STFT time-frequency map, which corresponds to a frequency distribution range of 1–2 Hz.
Originality/value
The research results have revealed the lateral vibration characteristics of the high-speed train’s car body during continuous hunting when passing through turnouts. On this basis, an effective diagnostic method has been proposed. With a focus on practical engineering applications, a rapid screening index for identifying potential issues has been proposed, significantly enhancing the efficiency of diagnostic processes.
Details
Keywords
Shen Kunrong and Jin Gang
The purpose of this paper is to comprehensively examine the influence of formal and informal institutional differences on enterprise investment margin, mode and result.
Abstract
Purpose
The purpose of this paper is to comprehensively examine the influence of formal and informal institutional differences on enterprise investment margin, mode and result.
Design/methodology/approach
This paper is based on 2,440 micro samples of large-scale outbound investment from 609 Chinese enterprises from the years 2005 to 2016.
Findings
The study has found that formal institutional differences have little impact on investment scale, but significantly affect investment diversification. In order to avoid the management risks brought by formal institutional differences, enterprises tend to a full ownership structure. However, the choice between greenfield investment and cross-border mergers and acquisitions is not affected by formal institutional differences. In contrast, the impact of informal institutional differences is more extensive. Both formal and informal institutional differences significantly increase the probability of investment failure. Further research found that the Belt and Road Initiative (BRI) bridges the formal institutional differences.
Originality/value
The study concludes that developing the BRI, especially cultural exchanges with countries alongside the Belt and Road, will help enterprises to “go global” faster and better.
Details
Keywords
Qi Ji, Yuanming Zhang, Gang Xiao, Hongfang Zhou and Zheng Lin
Data service (DS) is a special software service that enables data access in cloud environment and provides a unified data model for cross-origination data integration and data…
Abstract
Purpose
Data service (DS) is a special software service that enables data access in cloud environment and provides a unified data model for cross-origination data integration and data sharing. The purpose of the work is to automatically compose DSs and quickly generate data view to satisfy users' various data requirements (DRs).
Design/methodology/approach
The paper proposes an automatic DS composition and view generation approach. DSs are organized into DS dependence graph (DSDG) based on their inherent dependences, and DSs can be automatically composed using the DSDG according to user's DRs. Then, data view will be generated by interpreting the composed DS.
Findings
Experimental results with real cross-origination data sets show the proposed approaches have high efficiency and good quality for DS composition and view generation.
Originality/value
The authors propose a DS composition algorithm and a data view generation algorithm according to users' DRs.