Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 7 September 2021

Ema Utami, Irwan Oyong, Suwanto Raharjo, Anggit Dwi Hartanto and Sumarni Adi

Gathering knowledge regarding personality traits has long been the interest of academics and researchers in the fields of psychology and in computer science. Analyzing profile…

3323

Abstract

Purpose

Gathering knowledge regarding personality traits has long been the interest of academics and researchers in the fields of psychology and in computer science. Analyzing profile data from personal social media accounts reduces data collection time, as this method does not require users to fill any questionnaires. A pure natural language processing (NLP) approach can give decent results, and its reliability can be improved by combining it with machine learning (as shown by previous studies).

Design/methodology/approach

In this, cleaning the dataset and extracting relevant potential features “as assessed by psychological experts” are essential, as Indonesians tend to mix formal words, non-formal words, slang and abbreviations when writing social media posts. For this article, raw data were derived from a predefined dominance, influence, stability and conscientious (DISC) quiz website, returning 316,967 tweets from 1,244 Twitter accounts “filtered to include only personal and Indonesian-language accounts”. Using a combination of NLP techniques and machine learning, the authors aim to develop a better approach and more robust model, especially for the Indonesian language.

Findings

The authors find that employing a SMOTETomek re-sampling technique and hyperparameter tuning boosts the model’s performance on formalized datasets by 57% (as measured through the F1-score).

Originality/value

The process of cleaning dataset and extracting relevant potential features assessed by psychological experts from it are essential because Indonesian people tend to mix formal words, non-formal words, slang words and abbreviations when writing tweets. Organic data derived from a predefined DISC quiz website resulting 1244 records of Twitter accounts and 316.967 tweets.

Details

Applied Computing and Informatics, vol. 21 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Available. Open Access. Open Access
Article
Publication date: 6 February 2023

Assunta Di Vaio, Badar Latif, Nuwan Gunarathne, Manjul Gupta and Idiano D'Adamo

In this study, the authors examine artificial knowledge as a fundamental stream of knowledge management for sustainable and resilient business models in supply chain management…

14127

Abstract

Purpose

In this study, the authors examine artificial knowledge as a fundamental stream of knowledge management for sustainable and resilient business models in supply chain management (SCM). The study aims to provide a comprehensive overview of artificial knowledge and digitalization as key enablers of the improvement of SCM accountability and sustainable performance towards the UN 2030 Agenda.

Design/methodology/approach

Using the SCOPUS database and Google Scholar, the authors analyzed 135 English-language publications from 1990 to 2022 to chart the pattern of knowledge production and dissemination in the literature. The data were collected, reviewed and peer-reviewed before conducting bibliometric analysis and a systematic literature review to support future research agenda.

Findings

The results highlight that artificial knowledge and digitalization are linked to the UN 2030 Agenda. The analysis further identifies the main issues in achieving sustainable and resilient SCM business models. Based on the results, the authors develop a conceptual framework for artificial knowledge and digitalization in SCM to increase accountability and sustainable performance, especially in times of sudden crises when business resilience is imperative.

Research limitations/implications

The study results add to the extant literature by examining artificial knowledge and digitalization from the resilience theory perspective. The authors suggest that different strategic perspectives significantly promote resilience for SCM digitization and sustainable development. Notably, fostering diverse peer exchange relationships can help stimulate peer knowledge and act as a palliative mechanism that builds digital knowledge to strengthen and drive future possibilities.

Practical implications

This research offers valuable guidance to supply chain practitioners, managers and policymakers in re-thinking, re-formulating and re-shaping organizational processes to meet the UN 2030 Agenda, mainly by introducing artificial knowledge in digital transformation training and education programs. In doing so, firms should focus not simply on digital transformation but also on cultural transformation to enhance SCM accountability and sustainable performance in resilient business models.

Originality/value

This study is, to the authors' best knowledge, among the first to conceptualize artificial knowledge and digitalization issues in SCM. It further integrates resilience theory with institutional theory, legitimacy theory and stakeholder theory as the theoretical foundations of artificial knowledge in SCM, based on firms' responsibility to fulfill the sustainable development goals under the UN's 2030 Agenda.

Details

Journal of Enterprise Information Management, vol. 37 no. 2
Type: Research Article
ISSN: 1741-0398

Keywords

Access

Only Open Access

Year

Content type

1 – 2 of 2
Per page
102050