Search results

1 – 10 of 63
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 11 October 2023

Bachriah Fatwa Dhini, Abba Suganda Girsang, Unggul Utan Sufandi and Heny Kurniawati

The authors constructed an automatic essay scoring (AES) model in a discussion forum where the result was compared with scores given by human evaluators. This research proposes…

1041

Abstract

Purpose

The authors constructed an automatic essay scoring (AES) model in a discussion forum where the result was compared with scores given by human evaluators. This research proposes essay scoring, which is conducted through two parameters, semantic and keyword similarities, using a SentenceTransformers pre-trained model that can construct the highest vector embedding. Combining these models is used to optimize the model with increasing accuracy.

Design/methodology/approach

The development of the model in the study is divided into seven stages: (1) data collection, (2) pre-processing data, (3) selected pre-trained SentenceTransformers model, (4) semantic similarity (sentence pair), (5) keyword similarity, (6) calculate final score and (7) evaluating model.

Findings

The multilingual paraphrase-multilingual-MiniLM-L12-v2 and distilbert-base-multilingual-cased-v1 models got the highest scores from comparisons of 11 pre-trained multilingual models of SentenceTransformers with Indonesian data (Dhini and Girsang, 2023). Both multilingual models were adopted in this study. A combination of two parameters is obtained by comparing the response of the keyword extraction responses with the rubric keywords. Based on the experimental results, proposing a combination can increase the evaluation results by 0.2.

Originality/value

This study uses discussion forum data from the general biology course in online learning at the open university for the 2020.2 and 2021.2 semesters. Forum discussion ratings are still manual. In this survey, the authors created a model that automatically calculates the value of discussion forums, which are essays based on the lecturer's answers moreover rubrics.

Details

Asian Association of Open Universities Journal, vol. 18 no. 3
Type: Research Article
ISSN: 1858-3431

Keywords

Available. Open Access. Open Access
Article
Publication date: 24 January 2020

Xia Yao, Hongbo Sun and Baode Fan

The purpose of this paper is to aim mainly at social public decision-making problems, studies the corresponding relationship between different voting rule combinations and the…

558

Abstract

Purpose

The purpose of this paper is to aim mainly at social public decision-making problems, studies the corresponding relationship between different voting rule combinations and the final results, and discusses the quantitative relationships between group intelligence (final votes) and individual intelligence (everyone) to defend democracy under the circumstance of rapid development of network technology, and crowd intelligence becomes more complicated and universal.

Design/methodology/approach

After summarizing the crowd co-decisions of related studies, the standards, frameworks, techniques, methods and tools have been discussed according to the characteristics of large-scale simulations.

Findings

The contributions of this paper will be useful for both academics and practitioners for formulating VV&A in large-scale simulations.

Originality/value

This paper will help researchers solve the social public decision-making problems in large-scale simulations.

Details

International Journal of Crowd Science, vol. 4 no. 1
Type: Research Article
ISSN: 2398-7294

Keywords

Available. Open Access. Open Access
Article
Publication date: 4 September 2017

Yuqin Wang, Bing Liang, Wen Ji, Shiwei Wang and Yiqiang Chen

In the past few years, millions of people started to acquire knowledge from the Massive Open Online Courses (MOOCs). MOOCs contain massive video courses produced by instructors…

2516

Abstract

Purpose

In the past few years, millions of people started to acquire knowledge from the Massive Open Online Courses (MOOCs). MOOCs contain massive video courses produced by instructors, and learners all over the world can get access to these courses via the internet. However, faced with massive courses, learners often waste much time finding courses they like. This paper aims to explore the problem that how to make accurate personalized recommendations for MOOC users.

Design/methodology/approach

This paper proposes a multi-attribute weight algorithm based on collaborative filtering (CF) to select a recommendation set of courses for target MOOC users.

Findings

The recall of the proposed algorithm in this paper is higher than both the traditional CF and a CF-based algorithm – uncertain neighbors’ collaborative filtering recommendation algorithm. The higher the recall is, the more accurate the recommendation result is.

Originality/value

This paper reflects the target users’ preferences for the first time by calculating separately the weight of the attributes and the weight of attribute values of the courses.

Details

International Journal of Crowd Science, vol. 1 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Available. Open Access. Open Access
Article
Publication date: 10 November 2023

Sue-Ting Chang and Jia-Jhou Wu

The study aims to propose an instrument for measuring product-centeredness (i.e. the extent to which comment content is related to a product) using word embedding techniques as…

6590

Abstract

Purpose

The study aims to propose an instrument for measuring product-centeredness (i.e. the extent to which comment content is related to a product) using word embedding techniques as well as explore its determinants.

Design/methodology/approach

The study collected branded posts from 205 Instagram influencers and empirically examined how four factors (i.e. authenticity, vividness, coolness and influencer–product congruence) influence the content of the comments on branded posts.

Findings

Post authenticity and congruence are shown to have positive effects on product-centeredness. The interaction between coolness and authenticity is also significant. The number of comments or likes on branded posts is not correlated with product-centeredness.

Originality/value

In social media influencer marketing, volume-based metrics such as the numbers of likes and comments have been researched and applied extensively. However, content-based metrics are urgently needed, as fans may ignore brands and focus on influencers. The proposed instrument for assessing comment content enables marketers to construct content-based metrics. Additionally, the authors' findings enhance the understanding of social media users' engagement behaviors.

Details

Industrial Management & Data Systems, vol. 124 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Available. Open Access. Open Access
Article
Publication date: 9 December 2019

Qingqing Wu, Xianguan Zhao, Lihua Zhou, Yao Wang and Yudi Yang

With the rapid development of internet technology, open online social networks provide a broader platform for information spreading. While dissemination of information provides…

1000

Abstract

Purpose

With the rapid development of internet technology, open online social networks provide a broader platform for information spreading. While dissemination of information provides convenience for life, it also brings many problems such as security risks and public opinion orientation. Various negative, malicious and false information spread across regions, which seriously affect social harmony and national security. Therefore, this paper aims to minimize negative information such as online rumors that has attracted extensive attention. The most existing algorithms for blocking rumors have prevented the spread of rumors to some extent, but these algorithms are designed based on entire social networks, mainly focusing on the microstructure of the network, i.e. the pairwise relationship or similarity between nodes. The blocking effect of these algorithms may be unsatisfactory in some networks because of the sparse data in the microstructure.

Design/methodology/approach

An algorithm for minimizing the influence of dynamic rumor based on community structure is proposed in this paper. The algorithm first divides the network into communities, and integrates the influence of each node within communities and rumor influence probability to measure the influence of each node in the entire network, and then selects key nodes and bridge nodes in communities as blocked nodes. After that, a dynamic blocking strategy is adopted to improve the blocking effect of rumors.

Findings

Community structure is one of the most prominent features of networks. It reveals the organizational structure and functional components of a network from a mesoscopic level. The utilization of community structure can provide effective and rich information to solve the problem of data sparsity in the microstructure, thus effectively improve the blocking effect. Extensive experiments on two real-world data sets have validated that the proposed algorithm has superior performance than the baseline algorithms.

Originality/value

As an important research direction of social network analysis, rumor minimization has a profound effect on the harmony and stability of society and the development of social media. However, because the rumor spread has the characteristics of multiple propagation paths, fast propagation speed, wide propagation area and time-varying, it is a huge challenge to improve the effectiveness of the rumor blocking algorithm.

Details

International Journal of Crowd Science, vol. 3 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Available. Open Access. Open Access
Article
Publication date: 21 June 2021

Bufei Xing, Haonan Yin, Zhijun Yan and Jiachen Wang

The purpose of this paper is to propose a new approach to retrieve similar questions in online health communities to improve the efficiency of health information retrieval and…

541

Abstract

Purpose

The purpose of this paper is to propose a new approach to retrieve similar questions in online health communities to improve the efficiency of health information retrieval and sharing.

Design/methodology/approach

This paper proposes a hybrid approach to combining domain knowledge similarity and topic similarity to retrieve similar questions in online health communities. The domain knowledge similarity can evaluate the domain distance between different questions. And the topic similarity measures questions’ relationship base on the extracted latent topics.

Findings

The experiment results show that the proposed method outperforms the baseline methods.

Originality/value

This method conquers the problem of word mismatch and considers the named entities included in questions, which most of existing studies did not.

Details

International Journal of Crowd Science, vol. 5 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

Available. Open Access. Open Access
Article
Publication date: 4 August 2020

Kanak Meena, Devendra K. Tayal, Oscar Castillo and Amita Jain

The scalability of similarity joins is threatened by the unexpected data characteristic of data skewness. This is a pervasive problem in scientific data. Due to skewness, the…

870

Abstract

The scalability of similarity joins is threatened by the unexpected data characteristic of data skewness. This is a pervasive problem in scientific data. Due to skewness, the uneven distribution of attributes occurs, and it can cause a severe load imbalance problem. When database join operations are applied to these datasets, skewness occurs exponentially. All the algorithms developed to date for the implementation of database joins are highly skew sensitive. This paper presents a new approach for handling data-skewness in a character- based string similarity join using the MapReduce framework. In the literature, no such work exists to handle data skewness in character-based string similarity join, although work for set based string similarity joins exists. Proposed work has been divided into three stages, and every stage is further divided into mapper and reducer phases, which are dedicated to a specific task. The first stage is dedicated to finding the length of strings from a dataset. For valid candidate pair generation, MR-Pass Join framework has been suggested in the second stage. MRFA concepts are incorporated for string similarity join, which is named as “MRFA-SSJ” (MapReduce Frequency Adaptive – String Similarity Join) in the third stage which is further divided into four MapReduce phases. Hence, MRFA-SSJ has been proposed to handle skewness in the string similarity join. The experiments have been implemented on three different datasets namely: DBLP, Query log and a real dataset of IP addresses & Cookies by deploying Hadoop framework. The proposed algorithm has been compared with three known algorithms and it has been noticed that all these algorithms fail when data is highly skewed, whereas our proposed method handles highly skewed data without any problem. A set-up of the 15-node cluster has been used in this experiment, and we are following the Zipf distribution law for the analysis of skewness factor. Also, a comparison among existing and proposed techniques has been shown. Existing techniques survived till Zipf factor 0.5 whereas the proposed algorithm survives up to Zipf factor 1. Hence the proposed algorithm is skew insensitive and ensures scalability with a reasonable query processing time for string similarity database join. It also ensures the even distribution of attributes.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Available. Open Access. Open Access
Article
Publication date: 1 August 2024

Flordeliza P. Poncio

This review article is focused on the following research questions: RQ1: What are the methods used by authors to collect data in order to evaluate one's profile? RQ2: What are the…

804

Abstract

Purpose

This review article is focused on the following research questions: RQ1: What are the methods used by authors to collect data in order to evaluate one's profile? RQ2: What are the classification algorithms and ranking metrics used to give suggestions to users? RQ3: How effective are these algorithms and metrics identified in RQ2?

Design/methodology/approach

There are four major systematic review phases being carried out in this survey, namely the formulation of research questions, conducting the review, which includes the selection of articles and appraising evidence quality, data extraction and narrative data synthesis.

Findings

Collecting from primary sources is more personalized and relevant. Embedded skill sets that have a considerable impact on one’s career aspirations could be mined from secondary sources. A hybrid recommender system helped mitigate the limitations of both. The effectiveness of the models depends not only rely on the filtering techniques used but also on the metrics used to measure similarity and the frequency of words or phrases used in a document.

Research limitations/implications

The study benefits internship program coordinators of a university aiming to develop a recommender or matching system platform for their students. The content of the study may shed a light on how university decision-makers can explore options on what are the techniques or algorithms to be integrated. One of the advantages of internship or industrial training programs is that they would help students align them with their career goals. Research studies have discussed other RS filtering techniques apart from the three major filtering techniques.

Practical implications

The outcome of the study, which is a recommendation system to match a student's profile with the knowledge and skills being sought by organizations, may help ease the challenges encountered by both parties. The study benefits internship coordinators of a university who are planning to create a recommendation system, an innovative project to be used in teaching and learning.

Social implications

Internship programs can help a student grow personally and professionally. A university student looking for internship opportunities can find it a daunting task to undertake, as there is a vast pool of opportunities offered in the market. The confidence levels needed to match their knowledge, skills and career goals with the job descriptions (JDs) could be challenging. The same holds with companies, as finding the right people for the right job is a tough endeavor. The main objective of conducting this study is to identify models implemented in recommendation systems to give and/or rank suggestions given to users.

Originality/value

While surveys regarding recommender systems (RS) exist, there are gaps in the presentation of various data collection methods and the comparison of recommendation filtering techniques used for both primary and secondary sources of data. Most recommendation systems for internship programs are intended for European universities and not much for Southeast Asia. There are also a limited number of comparative studies or systematic review articles related to recommendation systems for internship programs offered in an Southeast Asian landscape. Systematic reviews on the usability of the proposed recommendation systems are also limited. The study presents reviews of articles, from data collection and techniques used to the usability of the proposed recommendation systems, which were presented in the articles being studied.

Details

Journal of Research in Innovative Teaching & Learning, vol. 17 no. 2
Type: Research Article
ISSN: 2397-7604

Keywords

Available. Open Access. Open Access
Article
Publication date: 9 January 2024

Kazuyuki Motohashi and Chen Zhu

This study aims to assess the technological capability of Chinese internet platforms (BAT: Baidu, Alibaba, Tencent) compared to US ones (GAFA: Google, Amazon, Facebook, Apple)…

1117

Abstract

Purpose

This study aims to assess the technological capability of Chinese internet platforms (BAT: Baidu, Alibaba, Tencent) compared to US ones (GAFA: Google, Amazon, Facebook, Apple). More specifically, this study explores Baidu’s technological catching-up process with Google by analyzing their patent textual information.

Design/methodology/approach

The authors retrieved 26,383 Google patents and 6,695 Baidu patents from PATSTAT 2019 Spring version. The collected patent documents were vectorized using the Word2Vec model first, and then K-means clustering was applied to visualize the technological space of two firms. Finally, novel indicators were proposed to capture the technological catching-up process between Baidu and Google.

Findings

The results show that Baidu follows a trend of US rather than Chinese technology which suggests Baidu is aggressively seeking to catch up with US players in the process of its technological development. At the same time, the impact index of Baidu patents increases over time, reflecting its upgrading of technological competitiveness.

Originality/value

This study proposed a new method to analyze technology mapping and evolution based on patent text information. As both US and China are crucial players in the internet industry, it is vital for policymakers in third countries to understand the technological capacity and competitiveness of both countries to develop strategic partnerships effectively.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 18 no. 3
Type: Research Article
ISSN: 2071-1395

Keywords

Available. Open Access. Open Access
Article
Publication date: 3 December 2024

Zaira Hassan Amur, Yew Kwang Hooi, Gul Muhammad Soomro and Hina Bhanbhro

This study aims to assess subjective responses in computer science education to understand students' grasp of core concepts. Extracting key ideas from short answers remains…

160

Abstract

Purpose

This study aims to assess subjective responses in computer science education to understand students' grasp of core concepts. Extracting key ideas from short answers remains challenging, necessitating an effective method to enhance learning outcomes.

Design/methodology/approach

This study introduces KeydistilTF, a model to identify essential concepts from student and teacher responses. Using the University of North Texas dataset from Kaggle, consisting of 53 teachers and 1,705 student responses, the model’s performance was evaluated using the F1 score for key concept detection.

Findings

KeydistilTF outperformed baseline techniques with F1 scores improved by 8, 6 and 4% for student key concept detection and 10, 8 and 6% for teacher key concept detection. These results indicate the model’s effectiveness in capturing crucial concepts and enhancing the understanding of key curriculum content.

Originality/value

KeydistilTF shows promise in improving the assessment of subjective responses in education, offering insights that can inform teaching methods and learning strategies. Its superior performance over baseline methods underscores its potential as a valuable tool in educational settings.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 63
Per page
102050