Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 5 October 2018

Liwei Xu, Guodong Yin, Guangmin Li, Athar Hanif and Chentong Bian

The purpose of this paper is to investigate problems in performing stable lane changes and to find a solution to reduce energy consumption of autonomous electric vehicles.

1662

Abstract

Purpose

The purpose of this paper is to investigate problems in performing stable lane changes and to find a solution to reduce energy consumption of autonomous electric vehicles.

Design/methodology/approach

An optimization algorithm, model predictive control (MPC) and Karush–Kuhn–Tucker (KKT) conditions are adopted to resolve the problems of obtaining optimal lane time, tracking dynamic reference and energy-efficient allocation. In this paper, the dynamic constraints of vehicles during lane change are first established based on the longitudinal and lateral force coupling characteristics and the nominal reference trajectory. Then, by optimizing the lane change time, the yaw rate and lateral acceleration that connect with the lane change time are limed. Furthermore, to assure the dynamic properties of autonomous vehicles, the real system inputs under the restraints are obtained by using the MPC method. Based on the gained inputs and the efficient map of brushless direct-current in-wheel motors (BLDC IWMs), the nonlinear cost function which combines vehicle dynamic and energy consumption is given and the KKT-based method is adopted.

Findings

The effectiveness of the proposed control system is verified by numerical simulations. Consequently, the proposed control system can successfully achieve stable trajectory planning, which means that the yaw rate and longitudinal and lateral acceleration of vehicle are within stability boundaries, which accomplishes accurate tracking control and decreases obvious energy consumption.

Originality/value

This paper proposes a solution to simultaneously satisfy stable lane change maneuvering and reduction of energy consumption for autonomous electric vehicles. Different from previous path planning researches in which only the geometric constraints are involved, this paper considers vehicle dynamics, and stability boundaries are established in path planning to ensure the feasibility of the generated reference path.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Available. Open Access. Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

1106

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only Open Access

Year

Content type

1 – 2 of 2
Per page
102050