Search results
1 – 10 of 18Chetan Kumar, K.B. Rangappa, S. Suchitra and Huchhe Gowda
Many studies have illustrated the vast advantages which blended learning has to offer to the learning community. However, when a learner accesses a digital platform, one cannot…
Abstract
Purpose
Many studies have illustrated the vast advantages which blended learning has to offer to the learning community. However, when a learner accesses a digital platform, one cannot ignore the negative repercussions which the learner would be subjected to in the process. Our study tries to analyze the negative repercussions of digital media distractions on their wholistic development.
Design/methodology/approach
Information pertaining to the use of digital media among students for blended learning and the consequent distractions faced by them in the process was elicited through a well-structured questionnaire from pre-university and university students. The PLS-SEM model was constructed to identify the effect of digital distractions on students' academic performance, outlook of life and health, keeping counseling and spiritual inclination as moderating variables.
Findings
From our research, we inferred that the students' time spent on a digital platform was directly related with their time spent on blended learning and their tendency to get distracted. However, they were more prone to e-distractions than e-learning. Furthermore, e-learning did not enhance their academic performance. However, distractions had significant negative repercussions on their mental health. Counseling that the students were getting in their educational institutions did not play any significant role in improving their mental health.
Originality/value
Studies which have been undertaken to analyze the negative repercussions of blended learning on the wholistic development of students are scarce. Given the increasing popularity of blended learning among South Asian students in recent times, our study has tried to bridge this gap.
Details
Keywords
Nianfei Gan, Miaomiao Zhang, Bing Zhou, Tian Chai, Xiaojian Wu and Yougang Bian
The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.
Abstract
Purpose
The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.
Design/methodology/approach
To deal with dynamic obstacles for autonomous vehicles during parking, a long- and short-term mixed trajectory planning algorithm is proposed in this paper. In long term, considering obstacle behavior, A-star algorithm was improved by RS curve and potential function via spatio-temporal map to obtain a safe and efficient initial trajectory. In short term, this paper proposes a nonlinear model predictive control trajectory optimizer to smooth and adjust the trajectory online based on the vehicle kinematic model. Moreover, the proposed method is simulated and verified in four common dynamic parking scenarios by ACADO Toolkit and QPOASE solver.
Findings
Compared with the spline optimization method, the results show that the proposed method can generate efficient obstacle avoidance strategies, safe parking trajectories and control parameters such as the front wheel angle and velocity in high-efficient central processing units.
Originality/value
It is aimed at improving the robustness of automatic parking system and providing a reference for decision-making in a dynamic environment.
Details
Keywords
Yangsheng Ye, Degou Cai, Lin Geng, Hongye Yan, Junkai Yao and Feng Chen
This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under…
Abstract
Purpose
This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under cyclic load.
Design/methodology/approach
According to the basic framework of critical state soil mechanics and in view of the characteristics of the coarse-grained soil filler for the HSR subgrade to bear the train vibration load repeatedly for a long time, the hyperbolic empirical relationship between particle breakage and plastic work was derived. Considering the influence of cyclic vibration time and stress ratio, the particle breakage correction function of coarse-grained soil filler for the HSR subgrade under cyclic load was proposed. According to the classical theory of plastic mechanics, the shearing dilatation equation of the coarse-grained soil filler for the HSR subgrade considering particle breakage was modified and obtained. A semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the HSR subgrade under cyclic load was further established. The backward Euler method was used to discretize the constitutive equation, build a numerical algorithm of “elastic prediction and plastic modification” and make a secondary development of the program to solve the cyclic compaction model.
Findings
Through the comparison with the result of laboratory triaxial test under the cyclic loading of coarse-grained soil filler for the HSR subgrade, the accuracy and applicability of the cyclic compaction model were verified. Results show that the model can accurately predict the cumulative deformation characteristics of coarse-grained soil filler for the HSR subgrade under the train vibration loading repeatedly for a long time. It considers the effects of particle breakage and stress ratio, which can be used to calculate and analyze the stress and deformation evolution law of the subgrade structure for HSR.
Originality/value
The research can provide a simple and practical method for calculating deformation of railway under cyclic loading.
Details
Keywords
It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of…
Abstract
Purpose
It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.
Design/methodology/approach
The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling, on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.
Findings
The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling, which will trigger hydrothermal erosion in case of sufficient moisture inflows, leading to the thawing settlement or the cracking of the subgrade, etc. The heat output of soil will be hindered the most in case of July filling, in which case the sinking and the distortion of the freezing front is found to be the most severe, which the recovery of the permafrost temperature field, the slowest, constituting the most unfavorable working condition. The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface, the subgrade height, the subgrade width and the volumetric thermal capacity of filler, while decreases with the increase of the thermal conductivity of filler. Therefore, the filler chose for engineering project shall be of small volumetric thermal capacity, low initial temperature and high thermal conductivity whenever possible.
Originality/value
The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.
Details
Keywords
Ye Shen, Bo Li, Wei Tian, Jinjun Duan and Mingxuan Liu
With the increasing requirements for intelligence in the field of aviation manufacturing, manual assembly can hardly adapt to the trend of future production. The purpose of this…
Abstract
Purpose
With the increasing requirements for intelligence in the field of aviation manufacturing, manual assembly can hardly adapt to the trend of future production. The purpose of this study is to realize the semi-automatic assembly of the movable airfoil by proposing a human-robot collaborative assembly strategy based on adaptive admittance control.
Design/methodology/approach
A logical judgment system for operating intentions is introduced in terms of different situations of the movements; hence, a human cognition-based adaptive admittance control method is developed to curb the damage of inertia; then virtual limit walls are raised on the periphery of the control model to ensure safety; finally, simulated and experimental comparisons with other admittance control methods are conducted to validate the proposed method.
Findings
The proposed method can save at least 28.8% of the time in the stopping phase which effectively compensates for inertia during the assembly process and has high robustness concerning data disturbances.
Originality/value
Due to the human-robot collaboration to achieve compliant assembly of movable airfoils can preserve human subjectivity while overcoming the physical limits of humans, which is of great significance to the investigation of intelligent aircraft assembly, the proposed method that reflects the user's naturalness and intuitiveness can not only enhance the stability and the flexibility of the manipulation, but also contribute to applications of industrial robots in the field of human-robot collaboration.
Details
Keywords
Wen-Yung Tseng, Weisheng Chiu and Ho Keat Leng
This study aims to compare the purchase intention of counterfeit outdoor products between Taiwan and Hong Kong consumers.
Abstract
Purpose
This study aims to compare the purchase intention of counterfeit outdoor products between Taiwan and Hong Kong consumers.
Design/methodology/approach
A total of 584 respondents from Hong Kong (n = 247, 42%) and Taiwan (n = 337, 58%) were recruited for the study. Data analysis was performed by using structural equation modelling techniques.
Findings
The results showed that consumers' perceived risk had a negative influence on attitude and intention to purchase counterfeit outdoor products. Moreover, attitude towards buying counterfeit outdoor products, perceived behavioural control and subjective norm had positive impacts on purchase intention. Brand consciousness, however, had a negative influence on purchase intention. The multi-group analysis identified significant differences between Hong Kong and Taiwanese respondents.
Originality/value
This study provides a better understanding of how these factors affect purchase intention of counterfeit outdoor products across different cultures.
Details
Keywords
Yang Li, Zhicheng Zheng, Yaochen Qin, Haifeng Tian, Zhixiang Xie and Peijun Rong
Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in…
Abstract
Purpose
Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in environmentally sensitive areas of China (ESAC). However, the phases and periodicity of drought changes in the ESAC remain largely unknown. Thus, this paper aims to identify the periodic characteristics of meteorological drought changes.
Design/methodology/approach
The potential evapotranspiration was calculated using the Penman–Monteith formula recommended by the Food and Agriculture Organization of the United Nations, whereas the standardized precipitation evaporation index (SPEI) of drought was simulated by coupling precipitation data. Subsequently, the Bernaola-Galvan segmentation algorithm was proposed to divide the periods of drought change and the newly developed extreme-point symmetric mode decomposition to analyze the periodic drought patterns.
Findings
The findings reveal a significant increase in SPEI in the ESAC, with the rate of decline in drought events higher in the ESAC than in China, indicating a more pronounced wetting trend in the study area. Spatially, the northeast region showed an evident drying trend, whereas the southwest region showed a wetting trend. Two abrupt changes in the drought pattern were observed during the study period, namely, in 1965 and 1983. The spatial instability of moderate or severe drought frequency and intensity on a seasonal scale was more consistent during 1966–1983 and 1984–2018, compared to 1961–1965. Drought variation was predominantly influenced by interannual oscillations, with the periods of the components of intrinsic mode functions 1 (IMF1) and 2 (IMF2) being 3.1 and 7.3 years, respectively. Their cumulative variance contribution rate reached 70.22%.
Research limitations/implications
The trend decomposition and periods of droughts in the study area were analyzed, which may provide an important scientific reference for water resource management and agricultural production activities in the ESAC. However, several problems remain unaddressed. First, the SPEI considers only precipitation and evapotranspiration, making it extremely sensitive to temperature increases. It also ignores the nonstationary nature of the hydrometeorological water process; therefore, it is prone to bias in drought detection and may overestimate the intensity and duration of droughts. Therefore, further studies on the application and comparison of various drought indices should be conducted to develop a more effective meteorological drought index. Second, the local water budget is mainly affected by surface evapotranspiration and precipitation. Evapotranspiration is calculated by various methods that provide different results. Therefore, future studies need to explore both the advantages and disadvantages of various evapotranspiration calculation methods (e.g. Hargreaves, Thornthwaite and Penman–Monteith) and their application scenarios. Third, this study focused on the temporal and spatial evolution and periodic characteristics of droughts, without considering the driving mechanisms behind them and their impact on the ecosystem. In future, it will be necessary to focus on a sensitivity analysis of drought indices with regard to climate change. Finally, although this study calculated the SPEI using meteorological data provided by China’s high-density observatory network, deviations and uncertainties were inevitable in the point-to-grid spatialization process. This shortcoming may be avoided by using satellite remote sensing data with high spatiotemporal resolution in the future, which can allow pixel-scale monitoring and simulation of meteorological drought evolution.
Practical implications
Under the background of continuous global warming, the climate in arid and semiarid areas of China has shown a trend of warming and wetting. It means that the plant environment in this region is getting better. In the future, the project of afforestation and returning farmland to forest and grassland in this region can increase the planting proportion of water-loving tree species to obtain better ecological benefits. Meanwhile, this study found that in the relatively water-scarce regions of China, drought duration was dominated by interannual oscillations (3.1a and 7.3a). This suggests that governments and nongovernmental organizations in the region should pay attention to the short drought period in the ESAC when they carry out ecological restoration and protection projects such as the construction of forest reserves and high-quality farmland.
Originality/value
The findings enhance the understanding of the phasic and periodic characteristics of drought changes in the ESAC. Future studies on the stress effects of drought on crop yield may consider these effects to better reflect the agricultural response to meteorological drought and thus effectively improve the tolerance of agricultural activities to drought events.
Details
Keywords
Tianyun Shi, Zhoulong Wang, Jia You, Pengyue Guo, Lili Jiang, Huijin Fu and Xu Gao
The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is…
Abstract
Purpose
The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is complex, and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters, perimeter intrusion and external environmental hazards. The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.
Design/methodology/approach
In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments, the research status is elaborated, and the latest research progress and achievements of the team are introduced. This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological, perimeter and external environmental situation perception methods for high-speed rail operation.
Findings
Based on the technical route of “situational awareness evaluation warning active control,” a technical system for monitoring the safety of high-speed train operation environments has been formed. Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters, perimeter intrusion and the external environment on high-speed rail safety. These works strongly support the improvement of China’s railway environmental safety guarantee technology.
Originality/value
With the operation of CR450 high-speed trains with a speed of 400 km per hour and the application of high-speed train autonomous driving technology in the future, new and higher requirements have been put forward for the safety of high-speed rail operation environments. The following five aspects of work are urgently needed: (1) Research the single factor disaster mechanism of wind, rain, snow, lightning, etc. for high-speed railways with a speed of 400 kms per hour, and based on this, study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment, revealing the coupling disaster mechanism of multiple influencing factors; (2) Research covers multi-source data fusion methods and associated features such as disaster monitoring data, meteorological information, route characteristics and terrain and landforms, studying the spatio-temporal evolution laws of meteorological disasters, perimeter intrusions and external environmental hazards; (3) In terms of meteorological disaster situation awareness, research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines; (4) In terms of perimeter intrusion, research a multi-modal fusion perception method for typical scenarios of high-speed rail operation in all time, all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and (5) In terms of external environment, based on the existing general network framework for change detection, we will carry out research on change detection and algorithms in the surrounding environment of high-speed rail.
Details
Keywords
Henri Pirkkalainen, Monideepa Tarafdar, Markus Salo and Markus Makkonen
Excessive use of work-related information technology (IT) devices can lead to major performance and well-being concerns for organizations. Extant research has provided evidence of…
Abstract
Purpose
Excessive use of work-related information technology (IT) devices can lead to major performance and well-being concerns for organizations. Extant research has provided evidence of the incidence of such problematic IT use in organizations. We extend the understanding of problematic IT use by examining its individual (proximal) and organizational (distal) antecedents.
Design/methodology/approach
Drawing from the self-worth theory and the concept of fear of being left behind, we address proximal antecedents that lead to problematic IT use. Drawing from the concept of autonomy paradox, we address distal antecedents of problematic IT use through a positive association with the two proximal antecedents. We report the results of a field study involving 846 individuals who use IT for work. Structural equation modeling was employed to analyze the data.
Findings
The results indicate that the proximal antecedents (IT insecurity and fear of missing out) are positively associated with problematic IT use. The distal antecedents (IT use autonomy and involvement facilitation) are positively associated with the proximal antecedents except for the relationship between IT use autonomy and IT insecurity, which was found statistically non-significant. Furthermore, fear of missing out fully mediates the effect of IT use autonomy on problematic IT use, whereas IT insecurity and fear of missing out fully mediate the effects of involvement facilitation on problematic IT use.
Originality/value
The paper theoretically extends the understanding of problematic IT use and identifies novel its proximal and distal antecedents.
Details
Keywords
Muhammad Jawad Sajid, Qingren Cao, Ming Cao and Shuang Li
Presentation of the different industrial carbon linkages of India. The purpose of this paper is to understand the direct and indirect impact of these industrial linkages.
Abstract
Purpose
Presentation of the different industrial carbon linkages of India. The purpose of this paper is to understand the direct and indirect impact of these industrial linkages.
Design/methodology/approach
This study uses a hypothetical extraction method with its various extensions. Under this method, different carbon linkages of a block are removed from the economy, and the effects of carbon linkages are determined by the difference between the original and the post-removal values. Energy and non-energy carbon linkages are also estimated.
Findings
“Electricity, gas and water supply (EGW)” at 655.61 Mt and 648.74 Mt had the highest total and forward linkages. “manufacturing and recycling” at 231.48 Mt had the highest backward linkage. High carbon-intensive blocks of “EGW” plus “mining and quarrying” were net emitters, while others were net absorbers. “Fuel and chemicals” at 0.08 Mt had almost neutral status. Hard coal was the main source of direct and indirect emissions.
Practical implications
Net emitting and key net forward blocks should reduce direct emission intensities. India should use its huge geographical potential for industrial accessibility to cheaper alternative energy. This alongside with technology/process improvements catalyzed by policy tools can help in mitigation efforts. Next, key net-backward blocks such as construction through intermediate purchases significantly stimulate emissions from other blocks. Tailored mitigation policies are needed in this regard.
Originality/value
By developing an understanding of India’s industrial carbon links, this study can guide policymakers. In addition, the paper lays out the framework for estimating energy and non-energy-based industrial carbon links.
Details