Search results
1 – 3 of 3Armin Mahmoodi, Leila Hashemi, Amin Mahmoodi, Benyamin Mahmoodi and Milad Jasemi
The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese…
Abstract
Purpose
The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese Candlestick, which is combined by the following meta heuristic algorithms: support vector machine (SVM), meta-heuristic algorithms, particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).
Design/methodology/approach
In addition, among the developed algorithms, the most effective one is chosen to determine probable sell and buy signals. Moreover, the authors have proposed comparative results to validate the designed model in this study with the same basic models of three articles in the past. Hence, PSO is used as a classification method to search the solution space absolutelyand with the high speed of running. In terms of the second model, SVM and ICA are examined by the time. Where the ICA is an improver for the SVM parameters. Finally, in the third model, SVM and GA are studied, where GA acts as optimizer and feature selection agent.
Findings
Results have been indicated that, the prediction accuracy of all new models are high for only six days, however, with respect to the confusion matrixes results, it is understood that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.
Research limitations/implications
In this study, the authors to analyze the data the long length of time between the years 2013–2021, makes the input data analysis challenging. They must be changed with respect to the conditions.
Originality/value
In this study, two methods have been developed in a candlestick model, they are raw based and signal-based approaches which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.
Details
Keywords
Leila Hashemi, Armin Mahmoodi, Milad Jasemi, Richard C. Millar and Jeremy Laliberté
This study aims to investigate a locating-routing-allocating problems and the supply chain, including factories distributor candidate locations and retailers. The purpose of this…
Abstract
Purpose
This study aims to investigate a locating-routing-allocating problems and the supply chain, including factories distributor candidate locations and retailers. The purpose of this paper is to minimize system costs and delivery time to retailers so that routing is done and the location of the distributors is located.
Design/methodology/approach
The problem gets closer to reality by adding some special conditions and constraints. Retail service start times have hard and soft time windows, and each customer has a demand for simultaneous delivery and pickups. System costs include the cost of transportation, non-compliance with the soft time window, construction of a distributor, purchase or rental of a vehicle and production costs. The conceptual model of the problem is first defined and modeled and then solved in small dimensions by general algebraic modeling system (GAMS) software and non-dominated sorting genetic algorithm II (NSGAII) and multiple objective particle swarm optimization (MOPSO) algorithms.
Findings
According to the solution of the mathematical model, the average error of the two proposed algorithms in comparison with the exact solution is less than 0.7%. Also, the algorithms’ performance in terms of deviation from the GAMS exact solution, is quite acceptable and for the largest problem (N = 100) is 0.4%. Accordingly, it is concluded that NSGAII is superior to MOSPSO.
Research limitations/implications
In this study, since the model is bi-objective, the priorities of decision makers in choosing the optimal solution have not been considered and each of the objective functions has been given equal importance according to the weighting methods. Also, the model has not been compared and analyzed in deterministic and robust modes. This is because all variables, except the one that represents the uncertainty of traffic modes, are deterministic and the random nature of the demand in each graph is not considered.
Practical implications
The results of the proposed model are valuable for any group of decision makers who care optimizing the production pattern at any level. The use of a heterogeneous fleet of delivery vehicles and application of stochastic optimization methods in defining the time windows, show how effective the distribution networks are in reducing operating costs.
Originality/value
This study fills the gaps in the relationship between location and routing decisions in a practical way, considering the real constraints of a distribution network, based on a multi-objective model in a three-echelon supply chain. The model is able to optimize the uncertainty in the performance of vehicles to select the refueling strategy or different traffic situations and bring it closer to the state of certainty. Moreover, two modified algorithms of NSGA-II and multiple objective particle swarm optimization (MOPSO) are provided to solve the model while the results are compared with the exact general algebraic modeling system (GAMS) method for the small- and medium-sized problems.
Details
Keywords
Renata Couto de Azevedo de Oliveira and Maurice Patterson
This paper aims to address what it means to brand a city as “smart”. In other words, what ideas, understandings and actions are mobilized by the discourse of smart cities in a…
Abstract
Purpose
This paper aims to address what it means to brand a city as “smart”. In other words, what ideas, understandings and actions are mobilized by the discourse of smart cities in a particular context.
Design/methodology/approach
Taking a brand interpretive approach, this paper uses deconstructive criticism to understand the performativity of smart cities within the Brazilian Charter for Smart Cities and to expose hegemonic power structures and the various colonizations that disenfranchise consumers and citizens of the Global South.
Findings
This paper finds that the branding of smart cities within the Brazilian Charter for Smart Cities is largely performative and rhetorical in nature. The authors identify those dimensions of the smart city that are materialized by this branding performance. For example, the authors identify how the Charter calls forth issues around technological solutionism, sustainability and social inclusion. At the same time, the analysis draws attention to the dimensions of smart cities that are disguised by such performances.
Research limitations/implications
The implications of the work suggest that the authors need to understand the designation “smart city” as a branding performance. More research is required in context to determine in exactly what ways smart city projects are being implemented.
Practical implications
Rather than adhering only to the rhetoric of smartness, cities have to work hard to make smartness a reality – a smartness constructed not just on technical solutions but also on human solutions. That is, the complexity of urban issues that are apparently addressed in the move to smartness demand more than a technological fix.
Originality/value
The research offers a novel lens through which to view smart cities.
Details