Search results
1 – 10 of 176The purpose of this paper is to study an expandable or contractible metallic fin and heat transfer process. The fin is assumed to be thin having a rectangular cross section. It is…
Abstract
Purpose
The purpose of this paper is to study an expandable or contractible metallic fin and heat transfer process. The fin is assumed to be thin having a rectangular cross section. It is attached to a hot surface with a time-dependent temperature, and its tip extends to a medium (fluid) of an ambient temperature. With the insulated wall constraint at the tip, the tip of the metallic fin has the property of expanding or contracting in time at a specific rate.
Design/methodology/approach
The corresponding physical problem is so formulated that the unsteady heat transfer problem is governed by means of a similarity variable represented by a second-order ordinary differential equation. The system can be reduced to the traditional well-documented steady state fin problem often studied in the literature, if the unsteadiness is turned off from the formulated system.
Findings
The system is then solved analytically for the temperature distribution through the fin. The fin tip temperatures are calculated, and the heat transfer analysis is made with varying physical parameters. And finally, observations are discussed leading to better fin efficiency and heat transfer enhancement.
Originality/value
An expandable or contractible metallic fin and heat transfer process are analyzed for the first time in the literature. Full solutions are presented, whose numerical correspondence is discussed through graphical and tabular forms.
Details
Keywords
Sanjay Kumar, Kushal Sharma, Oluwole Daniel Makinde, Vimal Kumar Joshi and Salman Saleem
The purpose of this study is to investigate the entropy generation in different nanofluids flow over a vertically moving rotating disk. Unlike the classical Karman flow…
Abstract
Purpose
The purpose of this study is to investigate the entropy generation in different nanofluids flow over a vertically moving rotating disk. Unlike the classical Karman flow, water-based nanofluids have various suspended nanoparticles, namely, Cu, Ag, Al2O3 and TiO2, and the disk is also moving vertically with time-dependent velocity.
Design/methodology/approach
The Keller box technique numerically solves the governing equations after reduction by suitable similarity transformations. The shear stress and heat transport features, along with flow and temperature fields, are numerically computed for different concentrations of the nanoparticles.
Findings
This study is done comparatively in between different nanofluids and for the cases of vertical movement of the disk. It is found that heat transfer characteristics rely not only on considered nanofluid but also on disk movement. Moreover, the upward movement of the disk diminishes the heat-transfer characteristics of the fluid for considered nanoparticles. In addition, for the same group of nanoparticles, an entropy generation study is also performed, and an increasing trend is found for all nanoparticles, with alumina nanoparticles dominating the others.
Originality/value
This research is a novel work on a vertically moving rotating surface for the water-conveying nanoparticle fluid flow with entropy generation analysis. The results were found to be in good agreement in the case of pure fluid.
Details
Keywords
Pascalin Tiam Kapen, Cédric Gervais Njingang Ketchate, Didier Fokwa and Ghislain Tchuen
For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified…
Abstract
Purpose
For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified Orr–Sommerfeld type which is solved numerically by the spectral collocation method based on Chebyshev polynomials. Unlike previous studies, blood is considered as a non-Newtonian fluid. The effects of various parameters such as volume fraction of nanoparticles, Casson parameter, Darcy number, Hartmann number on flow stability were examined and presented. This paper aims to investigate a linear stability analysis of non-Newtonian blood flow with magnetic nanoparticles with an application to controlled drug delivery.
Design/methodology/approach
Targeted delivery of therapeutic agents such as stem cells and drugs using magnetic nanoparticles with the help of external magnetic fields is an emerging treatment modality for many diseases. To this end, controlling the movement of nanoparticles in the human body is of great importance. This study investigates controlled drug delivery by using magnetic nanoparticles in a porous artery under the influence of a magnetic field.
Findings
It was found the following: the Casson parameter affects the stability of the flow by amplifying the amplitude of the disturbance which reflects its destabilizing effect. It emerges from this study that the taking into account of the non-Newtonian character is essential in the modeling of such a system, and that the results can be very different from those obtained by supposing that the blood is a Newtonian fluid. The presence of iron oxide nanoparticles in the blood increases the inertia of the fluid, which dampens the disturbances. The Strouhal number has a stabilizing effect on the flow which makes it possible to say that the oscillating circulation mechanisms dampen the disturbances. The Darcy number affects the stability of the flow and has a stabilizing effect, which makes it possible to increase the contact surface between the nanoparticles and the fluid allowing very high heat transfer rates to be obtained. It also emerges from this study that the presence of the porosity prevents the sedimentation of the nanoparticles. By studying the effect of the magnetic field on the stability of the flow, it is observed that the Hartmann number keeps the flow completely stable. This allows saying that the magnetic field makes the dissipations very important because the kinetic energy of the electrically conductive ferrofluid is absorbed by the Lorentz force.
Originality/value
The originality of this paper resides on the application of the linear stability analysis for controlled drug delivery.
Details
Keywords
M. Mustafa, Ammar Mushtaq, T. Hayat and A. Alsaedi
This study aims to deal with the laminar flow owing to rough rotating disk in the existence of vertical magnetic field and partial slip effects. The aim is to resolve heat…
Abstract
Purpose
This study aims to deal with the laminar flow owing to rough rotating disk in the existence of vertical magnetic field and partial slip effects. The aim is to resolve heat transfer problem in the existence of non-linear radiative flux and thermal slip effects. The study also analyzes the mass transfer process when the flow field contains chemically reacting species.
Design/methodology/approach
Modified von-Kármán transformations are applied to change the conservation equations into similar forms. The transformed equations are treated by a convenient shooting method and by contemporary built in routine bvp4c of MATLAB.
Findings
The numerical solutions are used to address the role of main ingredients of the problem, namely, wall roughness, radiation and chemical reaction on the flow fields.
Research limitations/implications
Temperature profiles are considerably affected by a parameter measuring wall to ambient temperature ratio. Furthermore, behavior of concentration field is highly influenced by the reaction rate of the diffusing species.
Originality/value
The concept of non-linear radiation in chemically reactive flow over a rotating disk is just introduced here.
Details
Keywords
Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa
This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.
Abstract
Purpose
This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.
Design/methodology/approach
The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.
Findings
Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.
Originality/value
Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.
Details
Keywords
Tasawar Hayat, Arsalan Aziz, Taseer Muhammad and Ahmed Alsaedi
The aim of this study is to elaborate three dimensional rotating flow of nanoliquid induced by a stretchable sheet subject to Darcy–Forchheimer porous space. Thermophoretic…
Abstract
Purpose
The aim of this study is to elaborate three dimensional rotating flow of nanoliquid induced by a stretchable sheet subject to Darcy–Forchheimer porous space. Thermophoretic diffusion and random motion aspects are retained. Prescribed surface heat flux and prescribed surface mass flux conditions are implemented at stretchable surface. Convergent series solutions have been derived for velocities, temperature and concentration.
Design/methodology/approach
Optimal homotopy analysis method is implemented for the solution development.
Findings
The current solution demonstrates very good agreement with those of the previously published studies in the special cases of regular fluid and nanofluids. Graphical results are presented to investigate the influences of the titania and copper nanoparticle volume fractions and also the nodal/saddle indicative parameter on flow and heat transfer characteristics. Here, the thermal characteristics of hybrid nanofluid are found to be higher in comparison to the base fluid and fluid containing single nanoparticles, respectively. An important point to note is that the developed model can be used with great confidence to study the flow and heat transfer of hybrid nanofluids.
Originality/value
To the best of the authors’ knowledge, no such consideration has been given in the literature yet.
Details
Keywords
B. Mahanthesh, B.J. Gireesha, M. Archana, Tasawar Hayat and Ahmed Alsaedi
The features of coated wire product are measured by the flow and heat transport occurring in the interior of dies. Therefore, an understanding of characteristics of polymers…
Abstract
Purpose
The features of coated wire product are measured by the flow and heat transport occurring in the interior of dies. Therefore, an understanding of characteristics of polymers momentum, heat mass transfer and wall shear stress is of great interest. Enhancement of heat transfer rate is fundamental need of wire coating process. Therefore, this study aims to investigate the effect of suspended nanoparticles in heat and mass transport phenomena of third-grade liquid in post-treatment of wire coating process. Buongiorno model for nanofluid is adopted. Two cases of temperature dependent viscosity are considered.
Design/methodology/approach
The governing equations are modelled with the help of steady-state conservation equations of mass, momentum, energy and nanoparticle concentration. Some appropriate dimensionless variables are introduced. Numerical solutions for the nonlinear problem are developed through Runge–Kutta–Fehlberg technique. The outcome of sundry variables for dimensionless flow, thermal and nanoparticle volume fraction fields are scrutinised through graphical illustrations.
Findings
The study’s numerical results disclose that the force on the total wire surface and shear stress at the surface in case of Reynolds Model dominate Vogel’s Model case. Impact of nanoparticles is constructive for force on the total wire surface and shear stress at the surface. The velocity of the coating material can be enhanced by the non-Newtonian property.
Practical implications
This study may provide useful information to improve the wire coating technology.
Originality/value
Effect of nanoparticles in wire coating analysis by using Brownian motion and thermophoresis slip mechanisms is investigated for the first time. Two different models for variable viscosity are used.
Details
Keywords
Kushal Sharma, Sanjay Kumar and Neha Vijay
In this paper the effects of viscous dissipation and ohmic heating on the fluid flow and resulting heat and mass transfer caused by vertically moving rotating disk are explored…
Abstract
Purpose
In this paper the effects of viscous dissipation and ohmic heating on the fluid flow and resulting heat and mass transfer caused by vertically moving rotating disk are explored with magnetic field acting perpendicular to disk rotation. The flow regime is also under the influence of Dufour and Soret effects.
Design/methodology/approach
An approach of similarity transformation is used to transform the governing set of equations into non-linear ordinary differential equations. Numerical simulations are carried out in Maple software to study the influence of incorporated non-dimensional parameters viz. disk movement parameter (−0.3 < S < 0.2), magnetic parameter (0.1 < M < 0.4), Eckert number (0.1 < Ec < 1), Schmidt number (0.1 < Sc < 1), Soret parameter (0.1 < Sr < 1) and Dufour number (0.1 < Du < 1) on velocity, temperature and concentration profiles.
Findings
The upward/downward motion of the disk along with rotation set up a three-dimensional flow over the disk surface and exerts the same effects as injection/suction through the wall. It is also observed that incorporated parameters along with disk movement greatly affect the flow regime and associated heat and mass transfer.
Originality/value
The present study examines the heat and mass transfer characteristics of incompressible Newtonian fluid over an impermeable rotating disk moving vertically. The effect of viscous dissipation and ohmic heating is considered. To the best of the authors’ knowledge, such consideration is yet to be published in the literature.
Details
Keywords
Patakota Sudarsana Reddy, Paluru Sreedevi and Kavaturi Venkata Suryanarayana Rao
The purpose of this paper is to know the influence of heat generation/absorption and slip effects on heat and mass transfer flow of carbon nanotubes – water-based nanofluid over a…
Abstract
Purpose
The purpose of this paper is to know the influence of heat generation/absorption and slip effects on heat and mass transfer flow of carbon nanotubes – water-based nanofluid over a rotating disk. Two types of carbon nanotubes, single and multi-walled, are considered in this analysis.
Design/methodology/approach
The non-dimensional system of governing equations is constructed using compatible transformations. These equations together with boundary conditions are solved numerically by using the most prominent Finite element method. The influence of various pertinent parameters such as magnetic parameter (0.4 – 1.0), nanoparticle volume fraction parameter (0.1 – 0.6), porosity parameter (0.3 – 0.6), radiation parameter (0.1 – 0.4), Prandtl number (2.2 – 11.2), space-dependent (−3.0 – 3.0), temperature-dependent (−3.0 – 1.5), velocity slip parameter (0.1 – 1.0), thermal slip parameter (0.1 – 0.4) and chemical reaction parameter (0.3 – 0.6) on nanofluids velocity, temperature and concentration distributions, as well as rates of velocity, temperature and concentration is calculated and the results are plotted through graphs and tables. Also, a comparative analysis is carried out to verify the validation of the present numerical code and found good agreement.
Findings
The results indicate that the temperature of the fluid elevates with rising values of nanoparticle volume fraction parameter. Furthermore, the rates of heat transfer rise from 4.8% to 14.6% when carbon nanotubes of 0.05 volume fraction are suspended into the base fluid.
Originality/value
The work carried out in this analysis is original and no part is copied from other sources.
Details
Keywords
Muhammad Ijaz Khan, Salman Ahmad, Tasawar Hayat, M. Waleed Ahmad Khan and Ahmed Alsaedi
The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined…
Abstract
Purpose
The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined magnetic field, Joule heating, viscous dissipation, heat source/sink and chemical reaction. Characteristics of nanofluid are described by Brownian motion and thermophoresis effect. At surface of the sheet zero mass flux and convective boundary condition are considered.
Design/methodology/approach
Considered flow problem is mathematically modeled and the governing system of partial differential equations is transformed into ordinary ones by using suitable transformation. The transformed ordinary differential equations system is figure out by homotopy algorithm. Outcomes of pertinent flow variables on entropy generation, skin friction, concentration, temperature, velocity, Bejan, Sherwood and Nusselts numbers are examined in graphs. Major outcomes are concluded in final section.
Findings
Velocity profile increased versus higher estimation of material and wall thickness parameter while it decays through larger Hartmann number. Furthermore, skin friction coefficient upsurges subject to higher values of Hartmann number and magnitude of skin friction coefficient decays via materials parameters. Thermal field is an increasing function of Hartmann number, radiation parameter, thermophoresis parameter and Eckert number.
Originality/value
The authors have discussed entropy generation in flow of thixotropic nanofluid over a variable thicked surface. No such consideration is yet published in the literature.
Details