Search results

1 – 20 of 118
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 4 July 2024

Songtao Qu, Qingyu Shi, Gong Zhang, Xinhua Dong and Xiaohua Xu

This study aims to address the problem of low-temperature wave soldering in industry production with Sn-9Zn-2.5 Bi-1.5In alloys and develop qualified process parameters. Sn–Zn

486

Abstract

Purpose

This study aims to address the problem of low-temperature wave soldering in industry production with Sn-9Zn-2.5 Bi-1.5In alloys and develop qualified process parameters. Sn–Zn eutectic alloys are lead-free solders applied in consumer electronics due to their low melting point, high strength, and low cost. In the electronic assembly industry, Sn–Zn eutectic alloys have great potential for use.

Design/methodology/approach

This paper explored developing and implementing process parameters for low-temperature wave soldering of Sn–Zn alloys (SN-9ZN-2.5BI-1.5 In). A two-factor, three-level design of the experiments experiment was designed to simulate various conditions parameters encountered in Sn–Zn soldering, developed the nitrogen protection device of waving soldering and proposed the optimal process parameters to realize mass production of low-temperature wave soldering on Sn–Zn alloys.

Findings

The Sn-9Zn-2.5 Bi-1.5In alloy can overcome the Zn oxidation problem, achieve low-temperature wave soldering and meet IPC standards, but requires the development of nitrogen protection devices and the optimization of a series of process parameters. The design experiment reveals that preheating temperature, soldering temperature and flux affect failure phenomena. Finally, combined with the process test results, an effective method to support mass production.

Research limitations/implications

In term of overcome Zn’s oxidation characteristics, anti-oxidation wave welding device needs to be studied. Various process parameters need to be developed to achieve a welding process with lower temperature than that of lead solder(Sn–Pb) and lead-free SAC(Sn-0.3Ag-0.7Cu). The process window of Sn–Zn series alloy (Sn-9Zn-2.5 Bi-1.5In alloy) is narrow. A more stringent quality control chart is required to make mass production.

Practical implications

In this research, the soldering temperature of Sn-9Zn-2.5 Bi-1.5In is 5 °C and 25 °C lower than Sn–Pb and Sn-0.3Ag-0.7Cu(SAC0307). To the best of the authors’ knowledge, this work was the first time to apply Sn–Zn solder alloy under actual production conditions on wave soldering, which was of great significance for the study of wave soldering of the same kind of solder alloy.

Social implications

Low-temperature wave soldering can supported green manufacturing widely, offering a new path to achieve carbon emissions for many factories and also combat to international climate change.

Originality/value

There are many research papers on Sn–Zn alloys, but methods of achieving low-temperature wave soldering to meet IPC standards are infrequent. Especially the process control method that can be mass-produced is more challenging. In addition, the metal storage is very high and the cost is relatively low, which is of great help to provide enterprise competitiveness and can also support the development of green manufacturing, which has a good role in promoting the broader development of the Sn–Zn series.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 13 March 2018

Jagjiwan Mittal and Kwang-Lung Lin

This paper aims to study the diffusion of Zn, Ni and Sn in the liquid state during the reflow ageing of the Sn-Zn solder above its melting point on an Ni/Cu substrate in relation…

131

Abstract

Purpose

This paper aims to study the diffusion of Zn, Ni and Sn in the liquid state during the reflow ageing of the Sn-Zn solder above its melting point on an Ni/Cu substrate in relation to the formation of intermetallic compounds (IMCs).

Design/methodology/approach

The Sn-Zn solder is reflowed on Ni/Cu substrates and is aged at 503 K. The formation of IMCs and their composition is characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Diffusion coefficients and diffusion distances of Zn, Ni and Sn in the liquid state during reflow and ageing are theoretically calculated. Both experimental and theoretical behaviours for Ni and Zn diffusions are compared.

Findings

Calculations show a linear increment in the liquid-state diffusion coefficients of Ni, Zn and Sn in the solder matrix with a rise in temperature, but they remained constant during ageing. However, diffusion distances increased slowly with temperature but manifold with ageing time. The experimental results revealed segregation of Zn and Ni at the interface in the as-reflow aged specimens. The Zn was concentrated at the solder–substrate interface and it reacted with Ni diffusing from the substrate to form Ni-Sn-Zn IMCs. The rapid diffusion of Zn and Ni with the increase in ageing time increased their atomic concentrations in the IMCs against the reduction in Sn concentration owing to a comparatively slower diffusion.

Originality/value

The novelty of the paper is the detailed study of theoretical diffusion of Zn, Sn and Ni in the liquid state during reflow ageing of Sn-Zn above its melting points on a Ni/Cu substrate. This is compared with values obtained experimentally and related to the mechanisms of IMC formation.

Details

Soldering & Surface Mount Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 1 April 2014

J. Mittal and K.L. Lin

This paper aims to compare the reflow and Zn diffusion behaviors in Sn-Zn and Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (5E) solders during soldering on a Ni/Cu substrate under infrared (IR…

161

Abstract

Purpose

This paper aims to compare the reflow and Zn diffusion behaviors in Sn-Zn and Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (5E) solders during soldering on a Ni/Cu substrate under infrared (IR) reflow. The study proposes a model on the effect of various elements particularly Zn diffusion behavior in the solders on the formation of intermetallic compounds (IMCs).

Design/methodology/approach

The melting activities of two solders near their melting points on copper substrates are visualized in an IR reflow furnace. Reflowed solder joints were analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy.

Findings

Reflow behaviors of the solders are similar. During melting, solder balls are first merged into each other and then reflow on the substrate from top to bottom. Both solders show a reduced amount of Zn in the solder. Theoretical calculations demonstrate a higher Zn diffusion in the 5E solder; however, the amount of Zn actually observed at the solder/substrate interface is lower than Sn-9Zn solder due to the formation of ZnAg3 in the solder. A thinner IMC layer is formed at the interface in the 5E solder than the Sn-Zn solder.

Research limitations/implications

The present work compares the 5E solder only with Sn-Zn solder. Additional research work may be required to compare 5E solder with other solders like Sn-Ag, SnAgCu, etc. to further establish its practical applications.

Practical implications

The study ascertains the advantages of 5E solder over Sn-Zn solder for all practical applications.

Originality/value

The significance of this paper is the understanding of the relation between reflow behavior of solders and reactivity of different elements in the solder alloys and substrate to form various IMCs and their influence on the formation of IMC layer at solder/substrate interface. Emphasis is provided for the diffusion behavior of Zn during reflow and respective reaction mechanisms.

Details

Soldering & Surface Mount Technology, vol. 26 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 19 September 2008

K. Bukat, J. Sitek, R. Kisiel, Z. Moser, W. Gasior, M. Kościelski and J. Pstruś

The purpose of this paper is a comparable evaluation of the influence of a particular element (Bi and Sb) added to Sn‐Ag‐Cu and Sn‐Zn alloys on their surface and interfacial…

855

Abstract

Purpose

The purpose of this paper is a comparable evaluation of the influence of a particular element (Bi and Sb) added to Sn‐Ag‐Cu and Sn‐Zn alloys on their surface and interfacial tensions, as well as the wetting properties on the Cu substrate expressed by the wetting angle.

Design/methodology/approach

The authors applied the L8 orthogonal Taguchi array to carry out the experiments and discussed the results using analysis of variance (ANOVA).

Findings

It was expected, on the base of previous studies, the decrease of the surface and interfacial tensions and thus improving wettability after the Bi and Sb addition to Sn‐Ag‐Cu and Sn‐Zn alloys. Unfortunately, the obtained results on the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys and the quaternary Sn‐Zn‐Bi‐Sb alloys do not confirm these trends. The performed analyses suggest that the compositions of the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys, as well as the quaternary Sn‐Zn‐Bi‐Sb alloys, do not have optimal compositions for practical application. The Cu, Bi and Sb elements in the case of the Sn‐Ag‐Cu‐Bi‐Sb alloys and the Zn, Bi and Sb elements in the case of the Sn‐Zn‐Bi‐Sb alloys show mutual interaction and, in consequence, there is no correlation between the tendency of the surface and interfacial tensions changes and the wettings of the Cu substrate.

Research limitations/implications

It is suggested that further studies are necessary for the purpose of the practical application, but they should be limited mainly to the Sn‐Ag‐Cu‐Bi and the Sn‐Zn‐Bi alloys with the optimal compositions.

Practical implications

The performed analysis suggests that none of the investigated compositions of the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys, as well as the quaternary Sn‐Zn‐Bi‐Sb alloys, have the optimal compositions for practical application.

Originality/value

The quickest way to determine which element of the alloy composition influences the surface tension and the wetting properties, and how, is to apply orthogonal analysis. After choosing the orthogonal array, the experiments were performed and analysis of variance (ANOVA) was used to perform the quantifiable analysis of the measured and calculated results of surface and interfacial tensions, as well as the wetting properties on the Cu substrate.

Details

Soldering & Surface Mount Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 18 September 2009

T.K. Yeh, K.L. Lin and B. Salam

The purpose of this paper is to study the influence of silver on the high‐temperature oxidation behaviour of the Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga (x=0, 0.1, 0.3 and 0.5) solder alloys.

287

Abstract

Purpose

The purpose of this paper is to study the influence of silver on the high‐temperature oxidation behaviour of the Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga (x=0, 0.1, 0.3 and 0.5) solder alloys.

Design/methodology/approach

The weight gains of the studied solders are measured using thermal gravimetric analyzers (TGA) at temperatures of 250, 300, 350 and 400°C. The weight gains measured are used to compare the oxidation behaviour of the studied solders. The surfaces of the solders are also analyzed with Auger emission spectroscopy (AES) depth profiling and thin‐film X‐ray diffractometry (thin‐film XRD) to identify the elements present on the surface of the studied solders.

Findings

The TGA results show that the weight gains decrease with increasing silver content in the studied solders. It meant that increasing silver content could help improve the high‐temperature oxidation behaviour of the studied solder. AES and thin‐film XRD confirm that the formed oxide layers on the surface of the studied solder are Zn‐based oxide layers.

Originality/value

The findings of this paper will help provide an understanding of the effects of silver on Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga solder.

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 4 September 2017

Ervina Efzan Mhd Noor and Ayodeji Samson Ogundipe

This paper aims to investigate the effect different fluxes have on the mechanical properties of lead-free solders, specifically Sn-Zn-Bi solder alloy. The solder billets were…

165

Abstract

Purpose

This paper aims to investigate the effect different fluxes have on the mechanical properties of lead-free solders, specifically Sn-Zn-Bi solder alloy. The solder billets were soldered in between copper substrates and flux was applied. The mechanical tests carried out on the solder alloys were tensile and shear tests. They were experimented on with different fluxes, namely, water-soluble (paste), rosin mildly activated (RMA) and insoluble (RMA) flux. From these experiments, the ultimate tensile strength, shear strength, elongation, yield stress, Young’s modulus and the stress-strain curve are derived. The results showed that solder billets that were soldered onto copper substrates with water-soluble flux yielded the highest ultimate tensile strength and shear strength values of 9.9961 MPa and 118.836 MPa, respectively. Billets soldered using RMA flux had the highest values of elongation and Young’s modulus, 0.306 mm and 50,257.295 MPa, respectively. However, on viewing the failure of all the specimens under an optical microscope and scanning electron microscope (SEM), specimens soldered using water-soluble flux possessed the least deformities, depicting their higher level of mechanical properties, entailing their strength and ductility, deeming them as the most suitable flux for microelectronic applications.

Design/methodology/approach

The solder billets were soldered in between copper substrates and flux was applied. The mechanical tests carried out on the solder alloys were tensile and shear tests. They were experimented on with different fluxes, namely, water-soluble (paste), RMA and insoluble flux (RMA) flux. From these experiments, the ultimate tensile strength, shear strength, elongation, yield stress, Young’s modulus and the stress-strain curve are derived.

Findings

The results showed that solder billets that were soldered onto copper substrates with water-soluble flux yielded the highest ultimate tensile strength and shear strength values of 9.9961 MPa and 118.836 MPa, respectively.

Originality/value

This paper demonstrated that water-soluble fluxes gave the better strength and were most suitable for microelectronics applications.

Details

Soldering & Surface Mount Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 8 February 2008

R.S. Lai, K.L. Lin and B. Salam

To study the effect of Ag content on the melting temperature and wetting properties of Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga lead‐free Solders.

274

Abstract

Purpose

To study the effect of Ag content on the melting temperature and wetting properties of Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga lead‐free Solders.

Design/methodology/approach

The solder alloys used in the experiment were Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga (x=0, 0.1, 0.3, 0.5, 1 and 1.5). In this study, the alloys were initially studied using differential scanning calorimetry to determine their melting temperatures. Afterward, the solderability of the solders was studied using wetting balance and contact angle methods. Moreover, the microstructures of the solders were also investigated with an optical microscope, scanning electron microscope, energy dispersive X‐ray, X‐ray diffraction and electron probe micro analysis.

Findings

A small increase in Ag content in the Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga solders, from 0.1 to 1.0 wt%, has been found to lower their solidus temperature from 198.05°C to 190.20°C. A Ag content of 1.5 wt% increased the solidus temperature of the studied solder systems to 197.79°C. Furthermore, the study also found that the addition of silver lowered the wetting forces of the studied solders. The formation of multi‐intermetallic layers of Cu‐Zn and Ag‐Zn at the interface between the studied solders and copper might explain the reduction of the wetting forces.

Research limitations/implications

The silver contents in the studied Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga solders were limited to 0, 0.1, 0.3, 0.5, 1.0 and 1.5 wt%.

Practical implications

Useful literature for solder alloy designers and SMT engineers.

Originality/value

The paper provides the answers to the research question of what is the effect of silver content on the melting temperature and wetting properties of Sn‐8.5Zn‐xAg‐0.01Al‐0.1Ga solders.

Details

Soldering & Surface Mount Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 3 February 2012

Krystyna Bukat, Janusz Sitek, Marek Koscielski, Zbigniew Moser, Wladyslaw Gasior and Janusz Pstrus

The purpose of this article is to establish why the wetting on PCBs with SnCu (HASL) and Snimm finishes in the presence of a flux is better than the wetting of those on a copper…

312

Abstract

Purpose

The purpose of this article is to establish why the wetting on PCBs with SnCu (HASL) and Snimm finishes in the presence of a flux is better than the wetting of those on a copper substrate. The practical aspect of the obtained results is the main goal of these investigations.

Design/methodology/approach

The authors applied the wetting balance method for the wetting measurements at 230 and 250°C, in nitrogen atmosphere, in the presence of the ORM0 type flux. The PCBs with the SnCu (HASL) and Snimm finishes were investigated in the state “as received”. To establish the wetting properties of the SnCu (HASL) and Snimm finishes on the PCBs, wetted by the investigated SnZnBiIn alloys, the SEM and EDX analyses were performed.

Findings

The authors obtained very good wetting results of the PCBs with the SnCu and Snimm finishes, wetted by the SnZn7Bi3In4 alloys. By applying the SEM and EDX methods, it was possible to establish that the barrier layer which was created during the HASL process between the copper and the SnCu solder is efficient enough to protect the copper against the influence of the Zn atoms from the SnZn7Bi3In4 solder. This is the reason for an improvement of the wetting properties. An immersion tin finish does not create such barrier layer with the copper. It results in a worse wetting than for the SnCu finishes but a better one than that for the copper. Immersion tin dissolves in the alloys during the soldering and this process delays the reaction between the copper and the Zn atoms from the SnZn7Bi3In4 solder.

Research limitations/implications

It is suggested that further studies are necessary for the confirmation of the practical application, but they should be limited to the reliability of the solder joint performance.

Practical implications

The best wetting results of the PCBs with “tin finishes”, especially with SnCu, wetted by the SnZn7Bi3In4 alloy, at 230 and 250°C and in nitrogen atmosphere, suggest a possibility of a practical usage of the tin‐zinc‐bismuth‐indium alloys for soldering in electronics.

Originality/value

The wetting balance method combined with the SEM and EDX analyses were used as the quickest way to determine the mechanism of the better wettability properties in the case of the PCBs with the SnCu and Snimm finishes, wetted by the SnZn7Bi3In4 alloy, compared to those of the PCBs on the Cu substrate.

Details

Soldering & Surface Mount Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 18 February 2019

Muhammad Firdaus Mohd Nazeri, Muhamad Zamri Yahaya, Ali Gursel, Fakhrozi Cheani, Mohamad Najmi Masri and Ahmad Azmin Mohamad

The purpose of this paper is to review and examine three of the most common corrosion characterization techniques specifically on Sn-Zn solders. The discussion will highlight the…

1134

Abstract

Purpose

The purpose of this paper is to review and examine three of the most common corrosion characterization techniques specifically on Sn-Zn solders. The discussion will highlight the configurations and recent developments on each of the compiled characterization techniques of potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy (EIS).

Design/methodology/approach

The approach will incorporate a literature review of previous works related to the experimental setups and common parameters.

Findings

The potentiostatic polarization, potentiodynamic polarization and EIS were found to provide crucial and vital information on the corrosion properties of Sn-Zn solders. Accordingly, this solder relies heavily on the amount of Zn available because of the inability to produce the intermetallic compound in between the elements. Further, the excellent mechanical properties and low melting temperature of the Sn-Zn solder is undeniable, however, the limitations regarding corrosion resistance present opportunities in furthering research in this field to identify improvements. This is to ensure that the corrosion performance can be aligned with the outstanding mechanical properties. The review also identified and summarized the advantages, recent trends and important findings in this field.

Originality/value

The unique challenges and future research directions regarding corrosion measurement in Sn-Zn solders were shown to highlight the rarely discussed risks and problems in the reliability of lead-free soldering. Many prior reviews have been undertaken of the Sn-Zn system, but limited studies have investigated the corrosive properties. Therefore, this review focuses on the corrosive characterizations of the Sn-Zn alloy system.

Details

Soldering & Surface Mount Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 29 June 2010

K. Bukat, Z. Moser, J. Sitek, W. Gąsior, M. Kościelski and J. Pstruś

The purpose of Part I of this paper is to investigate the influence of Bi additions on the surface tension, the interfacial tension, and the density of SnZn7Bi alloys (Bi=1 and 3…

1003

Abstract

Purpose

The purpose of Part I of this paper is to investigate the influence of Bi additions on the surface tension, the interfacial tension, and the density of SnZn7Bi alloys (Bi=1 and 3 percent by mass) as a continuation of similar previous studies on Bi and Sb additions to the binary Sn‐Zn alloy. The main aim of Part I is to indicate that the lowering of the surface tension and interfacial tension is not sufficient for practical applications. However, knowledge of the interfacial tension between the soldering flux and the solder is necessary to convert the wetting force into the contact angle. This will be documented in Part II.

Design/methodology/approach

The maximum bubble method was applied for the surface tension and the Miyazaki method was applied for the surface tension and the interfacial tension, using the density values from the dilatometric technique. The experimental surface tension results are compared with the Butler's thermodynamic modeling results and are discussed by means of the analysis of variance (ANOVA).

Findings

On the basis of previous studies on Sn‐Zn‐Bi‐Sb alloys, the addition of Bi to SnZn7 slightly decreased the surface tension measured in an Ar+H2 atmosphere, similarly to the Butler's modeling results. Also, a similar slight decrease of the surface tension from the Miyazaki method measured in air and in nitrogen was observed, as well as a more significant lowering of the interfacial tension with the use of a flux in nitrogen. There was also a slight influence of the temperature on the numerical values of the surface tensions and the interfacial tension. In the ANOVA, taking into account the Bi content, the temperature of measurements, the atmosphere and the flux, the flux used was shown as the most important, and also, to a lesser extent, the atmosphere.

Research limitations/implications

It is intended (the purpose of Part II of this paper) to verify the positive influence of Bi additions in SnZn7 alloys on the surface tensions and the interfacial tensions via the contact angles from the interaction with Cu on printed circuit board with different lead‐free finishes.

Practical implications

It is suggested that further studies on more efficient fluxes are necessary for the practical application being in agreement with the ANOVA and the literature information.

Originality/value

A slight improvement of the wettability with the use of Bi additions in the SnZn7Bi alloys in the course of various experimental techniques is proven, similar to results reported in various references. The obtained results will enlarge the SURDAT database of lead‐free soldering materials.

Details

Soldering & Surface Mount Technology, vol. 22 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 1 July 2006

Tadashi Takemoto and Masaharu Takemoto

To determine the endurance of stainless steels used for wave soldering container materials in molten lead‐free solders.

662

Abstract

Purpose

To determine the endurance of stainless steels used for wave soldering container materials in molten lead‐free solders.

Design/methodology/approach

A dissolution test on stainless steel wires in molten lead‐free solders was performed. The effects of the composition of the stainless steel, test period, and composition of the lead‐free solder on the dissolution rate were investigated. Dissolution was measured by cross‐sectioning the wires and measuring the reduction in radius.

Findings

The Sn‐Ag lead‐free solder showed faster dissolution than did the conventional Sn‐Pb eutectic. A severe dissolution rate was also observed for the Sn‐Zn system.

Practical implications

Quantitative data for the reaction rate between stainless steels and molten lead‐free solder is useful for the design of soldering machines and in planning their maintainance.

Originality/value

This paper shows the effect of basic factors on the dissolution rate of stainless steels in molten solder. It can give a basic understanding to engineers of the effect of lead free solders on wave soldering process equipment.

Details

Soldering & Surface Mount Technology, vol. 18 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

59

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 21 June 2013

Huan Ye, Songbai Xue, Cheng Chen and Yang Li

The purpose of this paper is to investigate the growth behavior and mechanism of Sn whisker induced by RE addition in Sn‐Zn‐Ga‐Pr solder at ambient condition.

168

Abstract

Purpose

The purpose of this paper is to investigate the growth behavior and mechanism of Sn whisker induced by RE addition in Sn‐Zn‐Ga‐Pr solder at ambient condition.

Design/methodology/approach

By means of aging treatment, FIB and SEM microstructure analysis, the whisker growth behavior was investigated.

Findings

It was found that the morphologies of tin whisker are changed during air exposure. After 60 days aging, the average length of the longest whiskers could reach up to 70 μm, some whiskers even can grow to a length of 100 μm. It was discussed that the oxidation of Pr‐Sn intermetallics provides driving force for whisker growth.

Originality/value

Tin whisker growth is a complex reliability issue for lead‐free solder. The current research can be helpful in re‐understanding the issue of tin whisker growth as well as an enriched understanding on the effects of REs on lead‐free solders.

Details

Soldering & Surface Mount Technology, vol. 25 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 27 January 2025

Guisheng Gan, Hao Yang, Jie Luo, Yongchong Ma, Jiajun Zhang, Xin Liu, Qiao He, Leqi Li and Dayong Cheng

The purpose of this study was to investigate the effects of aging time on the microstructure, mechanical properties and fracture morphology of Cu/Zn160%SAC0307/Al solder joints…

8

Abstract

Purpose

The purpose of this study was to investigate the effects of aging time on the microstructure, mechanical properties and fracture morphology of Cu/Zn160%SAC0307/Al solder joints produced through solid-state bonding.

Design/methodology/approach

Zn particles with a size of 1 µm and Sn-0.3Ag-0.7Cu (SAC0307) particles ranging from 20 to 38 µm were used to achieve Cu/Al micro-connections using ultrasonic assistance at a temperature of 180 °C, followed by aging treatment at 150 °C to enhance the quality of Cu/Al joints. Scanning electron microscopy was used for observing and analyzing the solder seam, interface microstructure, and fracture morphology. The structural composition was determined using energy dispersive spectroscopy, while a PTR-1102 bonding tester was used to measure the average shear strength.

Findings

The results indicated that the intermetallic compounds formed at the interface between Cu substrates and solder metal primarily consisted of smooth Cu5Zn8. The Al-side interface mainly comprises an Al-Sn-Zn solid solution, with Zn-Sn-Cu phases forming between SAC0307 particles at 180 °C. During the aging process, atomic diffusion was accelerated, leading to improved connection quality. The shear strength of the joints initially increased before decreasing as aging time progressed; it peaked at 32.92 MPa after 24 h – an increase of 76.8% compared to as-received joints. After reaching stability at 96 h, there was still a notable increase in shear strength by 48.4% relative to as-received joints.

Originality/value

This study further explores the strengthening mechanisms associated with solid-state bonded Cu/SACZ/Al joints through aging processes. Joints created via solid-state bonding demonstrate superior reliability compared to traditional soldered connections. It is anticipated that insights gained from this research will contribute valuable knowledge toward developing low-temperature soldering methodologies for heterogeneous materials.

Details

Microelectronics International, vol. 42 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Access Restricted. View access options
Article
Publication date: 21 September 2010

K. Bukat, J. Sitek, M. Kościelski, Z. Moser, W. Gąsior and J. Pstruś

The purpose of this paper is to investigate the influence of Bi additions on the wetting properties of SnZn7Bi alloys (Bi=1 and 3 per cent by mass) on a copper substrate and…

329

Abstract

Purpose

The purpose of this paper is to investigate the influence of Bi additions on the wetting properties of SnZn7Bi alloys (Bi=1 and 3 per cent by mass) on a copper substrate and printed circuit boards (PCBs) with lead‐free finishes (SnCu, immersion Sn, Ni/Au, organic solderability preservative) in the presence of fluxes. The practical implications of the results is the main purpose of these investigations.

Design/methodology/approach

A wetting balance method was used for wetting measurements at 230 and 250°C in nitrogen and air atmospheres in the presence of ORM0‐ or ROL0‐type fluxes. The PCBs were investigated ‘as received’ and after accelerated aging. The analysis of variance (ANOVA) analysis was performed in order to explain how the main factors of the experiments (the Bi content in the alloy (1 or 3 per cent), the test temperature and the test atmosphere) influenced the wetting ability of SnZn7Bi on Cu substrates.

Findings

As expected, a higher temperature and a higher Bi content in the alloy favoured the wetting of the copper substrate in the presence of the ORM0‐type flux in a nitrogen atmosphere. These results were confirmed by ANOVA analysis. Very good results were also obtained for the SnZn7Bi3 alloy's wettability on “tin coatings” on PCBs (SnCu and immersion Sn) both “as received” and after aging, in the presence of the ORM0‐type flux, for all the applied testing conditions (in both temperatures and N2 and air atmospheres). The less active flux (ROL0) caused a worsening of the alloy's wettability properties; however, the PCBs with SnCu and immersion Sn finishes maintained their wettability, even after aging, at very good and good levels, respectively.

Research limitations/implications

It is suggested that further studies are necessary for confirmation of the practical application, but they should be limited to the soldering of SnZnBi3 on PCBs with “tin coatings” and the quality of the solder joint performance.

Practical implications

The best SnZn7Bi3 wetting results on PCBs with “tin coatings” (SnCu and immersion Sn) at 230 and 250°C and in N2 and air atmospheres suggest the possibility of a practical usage of the tin‐zinc‐bismuth alloys for soldering in electronics using both the ORM0‐type flux and the even less active ROL0‐type flux, which are currently used in industrial lead‐free soldering processes.

Originality/value

The wetting balance method, combined with ANOVA was used as the quickest way to determine the wettability properties of SnZn7Bi on Cu substrates. Wettability measurements were also performed on the SnZn7 and SnZn7Bi alloys with different lead‐free finishes, in different experimental conditions.

Details

Soldering & Surface Mount Technology, vol. 22 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 1999

Paul Harris

A variety of lead‐free solders are now commercially available. Of those suitable for mass soldering perhaps the ones closest to a direct, drop‐in, replacement for tin‐lead are the…

769

Abstract

A variety of lead‐free solders are now commercially available. Of those suitable for mass soldering perhaps the ones closest to a direct, drop‐in, replacement for tin‐lead are the tin‐zinc‐bismuth alloys. For most tin‐based solders it is the tin which is the active element and dominates the all‐important interfacial reactions. As a result they have many properties in common. The addition of zinc, however, radically alters this picture. Zinc oxidation products are formed at the surfaces. Zinc intermetallic compounds are also formed in preference to tin‐compounds at the substrate interfaces. The nature and implications of these changes are outlined for the common basis materials.

Details

Soldering & Surface Mount Technology, vol. 11 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 24 January 2023

Guisheng Gan, Shi-qi Chen, Liujie Jiang, Cong Liu, Peng Ma, Tian Huang, Dayong Cheng and Xin Liu

This study aims to research properties of Cu/SAC0307 mixed solder balls/Al joints with different bonding temperature under ultrasonic-assisted.

112

Abstract

Purpose

This study aims to research properties of Cu/SAC0307 mixed solder balls/Al joints with different bonding temperature under ultrasonic-assisted.

Design/methodology/approach

A new method that 1 mm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 mm were mixed to fill the joint and successfully achieved micro-joining of Cu/Al under ultrasonic-assisted.

Findings

The results indicated that when the bonding temperature was 180°C, there was only one layer of CuZn5 intermetallic compounds (IMCs) at the Cu interface. However, when the bonding temperature was 190°C, 200°C and 210°C, the Cu interface IMCs had two layers: for one layer, the IMCs near the Cu substrate were Cu5Zn8 and for another layer, the IMCs near the solder were CuZn5. In addition, the thickness of the Cu interfacial IMCs increased with the bonding temperature. In particular, the thickness of IMCs at the Cu interface of the Cu/Al joints soldered at 210°C was 4.6 µm, which increased by 139.6% compared with that of the Cu/Al joints soldered at 180°C. However, there was no IMC layer at the Al interface, but there might be a Zn–Al solid solution layer. The shear strength of Cu/Al joints soldered at 180°C was only 15.01 MPa, but as the soldering temperature continued to increase, the shear strength of the Cu/Al joints increased rapidly. When the soldering temperature was 200°C, the shear strength of the Cu/Al joints reached the maximum of 38.07 MPa, which was 153.6% higher than that at 180°C. When the soldering temperature was 180°C, the fracture of Cu/Al joints was mainly on the Al side. However, when soldering temperature was 190°C, 200°C and 210°C, the fracture of Cu/Al joints was mainly broken in the Zn particles layer.

Originality/value

A new method that 1 mm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 mm were mixed to fill the Cu/Al joint at 210°C.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 9 February 2010

J. Mittal and K.L. Lin

The purpose of this paper is to visualise the activities of three solders; Sn‐37Pb, Sn‐9Zn and Sn‐3.5Ag on Cu substrates during reflow near their melting points and to relate them…

333

Abstract

Purpose

The purpose of this paper is to visualise the activities of three solders; Sn‐37Pb, Sn‐9Zn and Sn‐3.5Ag on Cu substrates during reflow near their melting points and to relate them with reflow reactions between solder and substrate.

Design/methodology/approach

Melting activities of three solders near their melting points on copper substrates are visualised in an infrared reflow furnace.

Findings

Solder balls demonstrate different ways of melting and reflowing behaviours in dissimilar times and temperature intervals. Melting of Sn‐9Zn solder balls is initiated simultaneously at the surface and joint between solder balls. This is followed by the melting at the joint between solder balls and the Cu substrate. During melting, solder balls are first merged into each other and then reflow on the substrate from top to bottom. Opposite to Sn‐9Zn, Sn‐3.5Ag solder balls start to melt at the surface and the joint between the solder and substrate, simultaneously. Balls are first reflowed from top to bottom and, in the process, liquid solder is merged. Unlike Sn‐9Zn and Sn‐3.5 Ag, melting of Sn‐37Pb solder balls is initially commenced at the surface only. This is followed by simultaneous melting at both joints. Variation in melting activities of these solders is found to be closely related to the coalescence mechanism of solder balls and the reflow reactions between the solders and the Cu substrate.

Originality/value

The elementary melting activities of different solders on Cu substrates is related with their reflow behaviours. This provides better understanding of solder behaviour and selection of good lead‐free solder for applications in the electronic industry.

Details

Soldering & Surface Mount Technology, vol. 22 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Access Restricted. View access options
Article
Publication date: 7 March 2023

Tian Huang, Guisheng Gan, Cong Liu, Peng Ma, Yongchong Ma, Zheng Tang, Dayong Cheng, Xin Liu and Kun Tian

This paper aims to investigate the effects of different ultrasonic-assisted loading degrees on the microstructure, mechanical properties and the fracture morphology of…

90

Abstract

Purpose

This paper aims to investigate the effects of different ultrasonic-assisted loading degrees on the microstructure, mechanical properties and the fracture morphology of Cu/Zn+15%SAC0307+15%Cu/Al solder joints.

Design/methodology/approach

A new method in which 45 μm Zn particles were mixed with 15% 500 nm Cu particles and 15% 500 nm SAC0307 particles as solders (SACZ) and five different ultrasonic loading degrees were applied for realizing the soldering between Cu and Al at 240 °C and 8 MPa. Then, SEM was used to observe and analyze the soldering seam, interface microstructure and fracture morphology; the structural composition was determined by EDS; the phase of the soldering seam was characterized by XRD; and a PTR-1102 bonding tester was adopted to test the average shear strength.

Findings

The results manifest that Al–Zn solid solution is formed on the Al side of the Cu/SACZ/Al joints, while the interface IMC (Cu5Zn8) is formed on the Cu side of the Cu/SACZ/Al joints. When single ultrasonic was used in soldering, the interface IMC (Cu5Zn8) gradually thickens with the increase of ultrasonic degree. It is observed that the proportion of Zn or ZnO areas in solders decreases, and the proportion of Cu–Zn compound areas increases with the variation of ultrasonic degree. The maximum shear strength of joint reaches 46.01 MPa when the dual ultrasonic degree is 60°. The fracture position of the joint gradually shifts from the Al side interface to the solders and then to the Cu side interface.

Originality/value

The mechanism of ultrasonic action on micro-nanoparticles is further studied. By using different ultrasonic loading degrees to realize Cu/Al soldering, it is believed that the understandings gained in this study may offer some new insights for the development of low-temperature soldering methodology for heterogeneous materials.

Details

Microelectronics International, vol. 40 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 2005

Peng Sun, Cristina Andersson, Xicheng Wei, Liqiang Cao, Zhaonian Cheng and Johan Liu

Sn‐Zn based lead free solders with a melting temperature around 199°C are an attractive alternative to the conventional Sn‐Pb solder and the addition of bismuth improves its…

807

Abstract

Purpose

Sn‐Zn based lead free solders with a melting temperature around 199°C are an attractive alternative to the conventional Sn‐Pb solder and the addition of bismuth improves its wetability. Whilst lead‐free soldering with Sn‐8Zn‐3Bi has already been used in the electronics assembly industry, it is necessary to study its low cycle fatigue properties since such data have not been reported up to now.

Design/methodology/approach

In this study, displacement‐controlled low cycle fatigue testing of Sn‐8Zn‐3Bi and Sn‐37Pb solder joints was done on lap shear samples. The test amplitude was varied whilst the frequency was kept constant at 0.2 Hz and failure was defined as a 50 per cent load reduction. Finite element (FE) modelling was used for analysis and the results were compared to the experimental data.

Findings

The microstructure of the Sn‐8Zn‐3Bi solder showed a mixed phase of small cellular‐shaped and coarser needle‐shaped areas. Au‐Zn intermetallic compounds were observed near the interface from the SEM‐EDS observation. The average lifetime for the Sn‐8Zn‐3Bi solder joints was 17 per cent longer compared to the Sn‐37Pb solder joints. The cross section observation indicated that the fatigue cracks propagated along the interface between the solder bulk and the Au/Ni layer. The locations of maximum equivalent stress from the FE simulation were found to be at the two opposite corners of the solder joints, coinciding with the experimental observations of crack initiation.

Originality/value

This is believed to be the first time, the low cycle fatigue properties of Sn‐8Zn‐3Bi solder have been reported.

Details

Soldering & Surface Mount Technology, vol. 17 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 20 of 118
Per page
102050