Search results

1 – 3 of 3
Article
Publication date: 15 November 2024

Kai Li, Cheng Zhu, Jianjiang Wang and Junhui Gao

With burgeoning interest in the low-altitude economy, applications of long-endurance unmanned aerial vehicles (LE-UAVs) have increased in remote logistics distribution. Given…

Abstract

Purpose

With burgeoning interest in the low-altitude economy, applications of long-endurance unmanned aerial vehicles (LE-UAVs) have increased in remote logistics distribution. Given LE-UAVs’ advantages of wide coverage, strong versatility and low cost, in addition to logistics distribution, they are widely used in military reconnaissance, communication relay, disaster monitoring and other activities. With limited autonomous intelligence, LE-UAVs require regular periodic and non-periodic control from ground control resources (GCRs) during flights and mission execution. However, the lack of GCRs significantly restricts the applications of LE-UAVs in parallel.

Design/methodology/approach

We consider the constraints of GCRs, investigating an integrated optimization problem of multi-LE-UAV mission planning and GCR allocation (Multi-U&G IOP). The problem integrates GCR allocation into traditional multi-UAV cooperative mission planning. The coupling decision of mission planning and GCR allocation enlarges the decision space and adds complexities to the problem’s structure. Through characterizing the problem, this study establishes a mixed integer linear programming (MILP) model for the integrated optimization problem. To solve the problem, we develop a three-stage iterative optimization algorithm combining a hybrid genetic algorithm with local search-variable neighborhood decent, heuristic conflict elimination and post-optimization of GCR allocation.

Findings

Numerical experimental results show that our developed algorithm can solve the problem efficiently and exceeds the solution performance of the solver CPLEX. For small-scale instances, our algorithm can obtain optimal solutions in less time than CPLEX. For large-scale instances, our algorithm produces better results in one hour than CPLEX does. Implementing our approach allows efficient coordination of multiple UAVs, enabling faster mission completion with a minimal number of GCRs.

Originality/value

Drawing on the interplay between LE-UAVs and GCRs and considering the practical applications of LE-UAVs, we propose the Multi-U&G IOP problem. We formulate this problem as a MILP model aiming to minimize the maximum task completion time (makespan). Furthermore, we present a relaxation model for this problem. To efficiently address the MILP model, we develop a three-stage iterative optimization algorithm. Subsequently, we verify the efficacy of our algorithm through extensive experimentation across various scenarios.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 20 September 2024

Ming-Hui Liu, Jianbin Xiong, Chun-Lin Li, Weijun Sun, Qinghua Zhang and Yuyu Zhang

The diagnosis and prediction methods used for estimating the health conditions of the bearing are of great significance in modern petrochemical industries. This paper aims to…

Abstract

Purpose

The diagnosis and prediction methods used for estimating the health conditions of the bearing are of great significance in modern petrochemical industries. This paper aims to discuss the accuracy and stability of improved empirical mode decomposition (EMD) algorithm in bearing fault diagnosis.

Design/methodology/approach

This paper adopts the improved adaptive complementary ensemble empirical mode decomposition (ICEEMD) to process the nonlinear and nonstationary signals. Two data sets including a multistage centrifugal fan data set from the laboratory and a motor bearing data set from the Case Western Reserve University are used to perform experiments. Furthermore, the proposed fault diagnosis method, combined with intelligent methods, is evaluated by using two data sets. The proposed method achieved accuracies of 99.62% and 99.17%. Through the experiment of two data, it can be seen that the proposed algorithm has excellent performance in the accuracy and stability of diagnosis.

Findings

According to the review papers, as one of the effective decomposition methods to deal with nonlinear nonstationary signals, the method based on EMD has been widely used in bearing fault diagnosis. However, EMD is often used to figure out the nonlinear nonstationarity of fault data, but the traditional EMD is prone to modal confusion, and the white noise in signal reconstruction is difficult to eliminate.

Research limitations/implications

In this paper only the top three optimal intrinsic mode functions (IMFs) are selected, but IMFs with less correlation cannot completely deny their value. Considering the actual working conditions of petrochemical units, the feasibility of this method in compound fault diagnosis needs to be studied.

Originality/value

Different from traditional methods, ICEEMD not only does not need human intervention and setting but also improves the extraction efficiency of feature information. Then, it is combined with a data-driven approach to complete the data preprocessing, and further carries out the fault identification and classification with the optimized convolutional neural network.

Details

Robotic Intelligence and Automation, vol. 44 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 6 February 2024

Il Bong Mun

This study longitudinally investigated the predictors and mediators of adolescent smartphone addiction by examining the impact of parental smartphone addiction at T1 on adolescent…

Abstract

Purpose

This study longitudinally investigated the predictors and mediators of adolescent smartphone addiction by examining the impact of parental smartphone addiction at T1 on adolescent smartphone addiction at T3, as well as the separate and sequential role of adolescent self-esteem and depression at T2 as mediating factors.

Design/methodology/approach

This study used a hierarchical regression and the PROCESS macro (Model 6) to investigate research model by collecting 3,904 parent-adolescent pairs. Panel data were collected from three waves of the Korean Children and Youth Panel Survey (KCYPS).

Findings

First, the result showed that parental smartphone addiction at T1 significantly and positively predicted adolescent smartphone addiction at T3. Second, the serial mediation analysis revealed that the impact of parental smartphone addiction at T1 on adolescent smartphone addiction at T3 was mediated by adolescent self-esteem and depression at T2 independently and serially.

Originality/value

The findings enhance our comprehension of the impact of parental smartphone addiction, adolescent self-esteem and depression, on adolescent smartphone addiction.

1 – 3 of 3