Search results
1 – 3 of 3Cosimo Magazzino, Monica Auteri, Nicolas Schneider, Ferdinando Ofria and Marco Mele
The objective of this study is to reevaluate the correlation among pharmaceutical consumption, per capita income, and life expectancy across different age groups (at birth, middle…
Abstract
Purpose
The objective of this study is to reevaluate the correlation among pharmaceutical consumption, per capita income, and life expectancy across different age groups (at birth, middle age, and advanced age) within the OECD countries between 1998 and 2018.
Design/methodology/approach
We employ a two-step methodology, utilizing two independent approaches. Firstly, we con-duct the Dumitrescu-Hurlin pairwise panel causality test, followed by Machine Learning (ML) experiments employing the Causal Direction from Dependency (D2C) Prediction algorithm and a DeepNet process, thought to deliver robust inferences with respect to the nature, sign, direction, and significance of the causal relationships revealed in the econometric procedure.
Findings
Our findings reveal a two-way positive bidirectional causal relationship between GDP and total pharmaceutical sales per capita. This contradicts the conventional notion that health expenditures decrease with economic development due to general health improvements. Furthermore, we observe that GDP per capita positively correlates with life expectancy at birth, 40, and 60, consistently generating positive and statistically significant predictive values. Nonetheless, the value generated by the input life expectancy at 60 on the target income per capita is negative (−61.89%), shedding light on the asymmetric and nonlinear nature of this nexus. Finally, pharmaceutical sales per capita improve life expectancy at birth, 40, and 60, with higher magnitudes compared to those generated by the income input.
Practical implications
These results offer valuable insights into the intricate dynamics between economic development, pharmaceutical consumption, and life expectancy, providing important implications for health policy formulation.
Originality/value
Very few studies shed light on the nature and the direction of the causal relationships that operate among these indicators. Exiting from the standard procedures of cross-country regressions and panel estimations, the present manuscript strives to promote the relevance of using causality tests and Machine Learning (ML) methods on this topic. Therefore, this paper seeks to contribute to the literature in three important ways. First, this is the first study analyzing the long-run interactions among pharmaceutical consumption, per capita income, and life expectancy for the Organization for Economic Co-operation and Development (OECD) area. Second, this research contrasts with previous ones as it employs a complete causality testing framework able to depict causality flows among multiple variables (Dumitrescu-Hurlin causality tests). Third, this study displays a last competitive edge as the panel data procedures are complemented with an advanced data testing method derived from AI. Indeed, using an ML experiment (i.e. Causal Direction from Dependency, D2C and algorithm) it is believed to deliver robust inferences regarding the nature and the direction of the causality. All in all, the present paper is believed to represent a fruitful methodological research orientation. Coupled with accurate data, this seeks to complement the literature with novel evidence and inclusive knowledge on this topic. Finally, to bring accurate results, data cover the most recent and available period for 22 OECD countries: from 1998 to 2018.
Details
Keywords
Kithsiri Samarakoon and Rudra P. Pradhan
This study investigates the mispricing dynamics of NIFTY 50 Index futures, drawing upon daily data spanning from January 2008 to July 2023.
Abstract
Purpose
This study investigates the mispricing dynamics of NIFTY 50 Index futures, drawing upon daily data spanning from January 2008 to July 2023.
Design/methodology/approach
The study employs both a single regime analysis and a tri-regime model to understand the fluctuations in NIFTY 50 Index futures mispricing.
Findings
The study reveals a complex interplay between various market factors and mispricing, including forward-looking volatility (measured by the NIFVIX index), changes in open interest, underlying index return, futures volume, index volume and time to maturity. Additionally, the relationships are regime-dependent, specifically identifying the regime-dependent nature of the relationship between forward-looking volatility and mispricing, the impact of futures volume on mispricing, the effect of open interest on mispricing, the varying influence of index volume and the influence of time to maturity across the three distinct regimes.
Practical implications
These findings offer valuable insights for policymakers and investors by providing a detailed understanding of futures market efficiency and potential arbitrage opportunities. The study emphasizes the importance of understanding market dynamics, transaction costs and timing, offering guidance to enhance market efficiency and capitalize on trading opportunities in the evolving Indian derivatives market.
Originality/value
The Vector Autoregression (VAR) and Threshold Vector Autoregression Regression (TVAR) models are deployed to disentangle the interrelationships between NIFTY 50 Index futures mispricing and related endogenous determinants.
Research highlights
This study investigates the Nifty 50 Index futures mispricing across three distinct market regimes.
We highlight how factors like volatility, futures volume, and open interest vary in their impact.
The study employs vector auto-regressive and threshold vector auto-regressive models to explore the complex relationships influencing mispricing.
We provide valuable insights for investors and policymakers on improving market efficiency and identifying potential arbitrage opportunities.
Details
Keywords
Jari Huikku, Elaine Harris, Moataz Elmassri and Deryl Northcott
This study aims to explore how managers exercise agency in strategic investment decisions (SIDs) by drawing on their knowledgeability of the strategic context. Specifically, the…
Abstract
Purpose
This study aims to explore how managers exercise agency in strategic investment decisions (SIDs) by drawing on their knowledgeability of the strategic context. Specifically, the authors address the role of position–practice relations and irresistible causal forces in this conduct.
Design/methodology/approach
The authors examine SID-making (SIDM) practices in four case organisations operating in highly competitive markets, conducting interviews with managers at various levels and analysing company documents. Drawing on strong structuration theory, the authors show how managerial decision makers draw upon their knowledge of organisational context when exercising agency in SIDs.
Findings
The authors provide insights into how SIDM behaviour, specifically agents’ conduct, is shaped by a combination of position–practice relations and the agents’ comprehension of their organisation’s context.
Research limitations/implications
The authors extend the SIDM literature by surfacing the issue of how actors’ conjuncturally-specific knowledge of external structures shapes the general dispositions they draw on in exercising agency in practice.
Originality/value
The authors extend the SIDM literature by surfacing the issue of how actors’ conjuncturally-specific knowledge of external structures shapes the general dispositions they draw on in exercising agency in practice. Particularly, the authors contribute to this literature by identifying irresistible causal forces and illuminating why actors might not resist in SIDM processes, despite having the potential to do so.
Details