Kaixuan Hou, Zhan-wen Niu and Yueran Zhang
The purpose of this study is to explore how to select a suitable supply chain collaboration paradigm (SCCP) based on the intelligent manufacturing model (IMM) of enterprises.
Abstract
Purpose
The purpose of this study is to explore how to select a suitable supply chain collaboration paradigm (SCCP) based on the intelligent manufacturing model (IMM) of enterprises.
Design/methodology/approach
Given the fit between internal collaboration and external collaboration, we propose a model to select a suitable SCCP based on two-sided matching between SCCPs and IMMs. In this decision problem, we invited five university scholars and seven related consultants to evaluate SCCPs and IMMs based on the regret theory, which is used to obtain the perceived utility and matching results. The evaluation values are comfortably expressed through probabilistic linguistic term sets (PLTSs). Also, we set the lowest acceptance threshold to improve the accuracy of matching results.
Findings
The findings indicate that the characteristics of IMMs can significantly influence the selection of SCCPs, and an SCCP is not suitable for all IMMs. Interestingly, the study findings suggest that the selection of SCCP is diverse and multi-optional under the constraints of IMMs.
Originality/value
Existing studies have explored supply chain collaboration (SCC) in Industry 4.0 to improve supply chain performance, but less attention has been paid to the impact of the match between SCCPs and IMMs on supply chain performance. And even fewer studies have addressed how to select a suitable SCCP in different IMMs. This study provides a unique contribution to the practice of SCC and expands the understanding of supply chain management in Industry 4.0.
Details
Keywords
Long Wang, Fengtao Wang, Linkai Niu, Xin Li, Zihao Wang and Shuping Yan
The purpose of this paper is to combine triboelectric nanogeneration technology with ball bearing structure to achieve energy collection and fault monitoring.
Abstract
Purpose
The purpose of this paper is to combine triboelectric nanogeneration technology with ball bearing structure to achieve energy collection and fault monitoring.
Design/methodology/approach
In this paper, according to the rotation mode of ball bearings, the freestanding mode of triboelectric nanogeneration is selected to design and manufacture a novel triboelectric nanogeneration device Rolling Ball Triboelectric Nanogenerator (RB-TENG) which combines rotary energy collection with ball bearing fault self-sensing.
Findings
The 10,000s continuous operation experiment of the RB-TENG is carried out to verify its robustness. The accurate feedback relationship between the RB-TENG and rotation velocity can be demonstrated by the fitting comparison between the theoretical and experimental electrical signal periods at a certain time. By comparing the output electrical signals of the normal RB-TENG and the rotor spalling RB-TENG and polytetrafluoroethylene (PTFE) balls with different degrees of wear at 500 r/min, it can be concluded that the RB-TENG has an ideal monitoring effect on the radial clearance distance of bearings. The spalling fault test of the RB-TENG stator inner ring and rotor outer ring is carried out.
Originality/value
Through coupling experiments of rotor spalling fault of the RB-TENG and PTFE balls fault with different degrees of wear, it can be seen that when rotor spalling fault occurs, balls wear has a greater impact on the normal operation of the RB-TENG, and it is easier to identify. The fault self-sensing ability of the RB-TENG can be obtained, which is expected to provide an effective scheme for monitoring the radial wear clearance distance of ball bearings.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2024-0295/
Details
Keywords
Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth
This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…
Abstract
Purpose
This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.
Design/methodology/approach
Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.
Findings
The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.
Research limitations/implications
This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.
Practical implications
The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.
Originality/value
This is one of the first SLRs on drone applications in LMD from a logistics management perspective.