Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 3 March 2025

Kaixuan Hou, Zhan-wen Niu and Yueran Zhang

The purpose of this study is to explore how to select a suitable supply chain collaboration paradigm (SCCP) based on the intelligent manufacturing model (IMM) of enterprises.

6

Abstract

Purpose

The purpose of this study is to explore how to select a suitable supply chain collaboration paradigm (SCCP) based on the intelligent manufacturing model (IMM) of enterprises.

Design/methodology/approach

Given the fit between internal collaboration and external collaboration, we propose a model to select a suitable SCCP based on two-sided matching between SCCPs and IMMs. In this decision problem, we invited five university scholars and seven related consultants to evaluate SCCPs and IMMs based on the regret theory, which is used to obtain the perceived utility and matching results. The evaluation values are comfortably expressed through probabilistic linguistic term sets (PLTSs). Also, we set the lowest acceptance threshold to improve the accuracy of matching results.

Findings

The findings indicate that the characteristics of IMMs can significantly influence the selection of SCCPs, and an SCCP is not suitable for all IMMs. Interestingly, the study findings suggest that the selection of SCCP is diverse and multi-optional under the constraints of IMMs.

Originality/value

Existing studies have explored supply chain collaboration (SCC) in Industry 4.0 to improve supply chain performance, but less attention has been paid to the impact of the match between SCCPs and IMMs on supply chain performance. And even fewer studies have addressed how to select a suitable SCCP in different IMMs. This study provides a unique contribution to the practice of SCC and expands the understanding of supply chain management in Industry 4.0.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Access Restricted. View access options
Article
Publication date: 16 January 2025

Long Wang, Fengtao Wang, Linkai Niu, Xin Li, Zihao Wang and Shuping Yan

The purpose of this paper is to combine triboelectric nanogeneration technology with ball bearing structure to achieve energy collection and fault monitoring.

23

Abstract

Purpose

The purpose of this paper is to combine triboelectric nanogeneration technology with ball bearing structure to achieve energy collection and fault monitoring.

Design/methodology/approach

In this paper, according to the rotation mode of ball bearings, the freestanding mode of triboelectric nanogeneration is selected to design and manufacture a novel triboelectric nanogeneration device Rolling Ball Triboelectric Nanogenerator (RB-TENG) which combines rotary energy collection with ball bearing fault self-sensing.

Findings

The 10,000s continuous operation experiment of the RB-TENG is carried out to verify its robustness. The accurate feedback relationship between the RB-TENG and rotation velocity can be demonstrated by the fitting comparison between the theoretical and experimental electrical signal periods at a certain time. By comparing the output electrical signals of the normal RB-TENG and the rotor spalling RB-TENG and polytetrafluoroethylene (PTFE) balls with different degrees of wear at 500 r/min, it can be concluded that the RB-TENG has an ideal monitoring effect on the radial clearance distance of bearings. The spalling fault test of the RB-TENG stator inner ring and rotor outer ring is carried out.

Originality/value

Through coupling experiments of rotor spalling fault of the RB-TENG and PTFE balls fault with different degrees of wear, it can be seen that when rotor spalling fault occurs, balls wear has a greater impact on the normal operation of the RB-TENG, and it is easier to identify. The fault self-sensing ability of the RB-TENG can be obtained, which is expected to provide an effective scheme for monitoring the radial wear clearance distance of ball bearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2024-0295/

Details

Industrial Lubrication and Tribology, vol. 77 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Available. Open Access. Open Access
Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

5010

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. 36 no. 7
Type: Research Article
ISSN: 0957-4093

Keywords

1 – 3 of 3
Per page
102050