Shicheng Huang, Yaqi Wang, Xiaoya Gong and Fumin Deng
This paper aims to explore the underlying mechanisms and boundary conditions through which equipment manufacturing enterprises can capture market value from digital…
Abstract
Purpose
This paper aims to explore the underlying mechanisms and boundary conditions through which equipment manufacturing enterprises can capture market value from digital transformation, with a specific focus on the roles of knowledge search and knowledge recombination.
Design/methodology/approach
This study uses a double fixed-effects model to test the hypotheses, using a unique data set of “firm-year” observations from 739 publicly listed equipment manufacturing companies in China, spanning the period from 2018 to 2022.
Findings
Digital transformation drives market value creation in equipment manufacturing enterprises through both breakthrough knowledge recombination (BKR) and progressive knowledge recombination (PKR). In addition, the analysis of marginal conditions reveals that diversified knowledge search serves as a substitute for digital transformation in promoting BKR, while also positively moderating the relationship between digital transformation and PKR.
Originality/value
Grounded in the knowledge-based view theoretical framework, this study introduces the novel concepts of BKR and PKR and systematically examines how digital transformation impacts market value in equipment manufacturing enterprises.
Details
Keywords
Xiaoming Han, He Zhang and Kangjian Yang
This study aims to investigate the temperature rise characteristics of vibrating rolling bearings under the influence of the polarization force of unbalanced eccentric blocks. A…
Abstract
Purpose
This study aims to investigate the temperature rise characteristics of vibrating rolling bearings under the influence of the polarization force of unbalanced eccentric blocks. A thermal-fluid-solid mechanics coupled finite element model is established to analyze the effects of different loads and rotational speeds on bearing temperature to prevent overheating, wear and thermal damage.
Design/methodology/approach
A thermal-fluid-solid mechanics coupled finite element model of the vibrating rolling bearing is developed based on the principles of heat transfer. Finite element analysis software is used to conduct numerical simulations and study the temperature distribution of the bearing system under different loads and speeds. The model’s accuracy is verified by experimentally measuring the actual temperature of the bearing under the same working conditions.
Findings
This study successfully established a thermal-fluid-solid mechanics coupled finite element model of a vibrating rolling bearing, verifying its accuracy and reliability. The research results provide an essential reference for optimizing bearing design, preventing overheating and extending service life.
Research limitations/implications
By analyzing the temperature rise characteristics under various load and rotational speed conditions, the law governing the internal temperature distribution of bearings is revealed. This finding offers a theoretical foundation for comprehending the thermal behavior of bearings.
Practical implications
This study offers a scientific foundation for the maintenance and fault diagnosis of shaker rolling bearings, aiding in the timely identification and resolution of thermal damage issues. Through the optimization of bearing design and usage conditions, the equipment’s lifespan can be prolonged, maintenance expenses can be minimized and production efficiency can be enhanced.
Originality/value
A thermal-fluid-solid mechanics coupled finite element model of a vibrating rolling bearing was established, considering the interaction of multiple physical fields. The influence of the polarization force from the unbalanced eccentric block on the bearing temperature is analyzed in detail, which is close to the actual working conditions.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2024-0396/