Maria Angela Butturi, Francesco Lolli and Rita Gamberini
This study presents the development of a supply chain (SC) observatory, which is a benchmarking solution to support companies within the same industry in understanding their…
Abstract
Purpose
This study presents the development of a supply chain (SC) observatory, which is a benchmarking solution to support companies within the same industry in understanding their positioning in terms of SC performance.
Design/methodology/approach
A case study is used to demonstrate the set-up of the observatory. Twelve experts on automatic equipment for the wrapping and packaging industry were asked to select a set of performance criteria taken from the literature and evaluate their importance for the chosen industry using multi-criteria decision-making (MCDM) techniques. To handle the high number of criteria without requiring a high amount of time-consuming effort from decision-makers (DMs), five subjective, parsimonious methods for criteria weighting are applied and compared.
Findings
A benchmarking methodology is presented and discussed, aimed at DMs in the considered industry. Ten companies were ranked with regard to SC performance. The ranking solution of the companies was on average robust since the general structure of the ranking was very similar for all five weighting methodologies, though simplified-analytic hierarchy process (AHP) was the method with the greatest ability to discriminate between the criteria of importance and was considered faster to carry out and more quickly understood by the decision-makers.
Originality/value
Developing an SC observatory usually requires managing a large number of alternatives and criteria. The developed methodology uses parsimonious weighting methods, providing DMs with an easy-to-use and time-saving tool. A future research step will be to complete the methodology by defining the minimum variation required for one or more criteria to reach a specific position in the ranking through the implementation of a post-fact analysis.
Details
Keywords
Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth
This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…
Abstract
Purpose
This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.
Design/methodology/approach
Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.
Findings
The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.
Research limitations/implications
This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.
Practical implications
The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.
Originality/value
This is one of the first SLRs on drone applications in LMD from a logistics management perspective.
Details
Keywords
Hamzah Al-Mawali, Zaid Mohammad Obeidat, Hashem Alshurafat and Mohannad Obeid Al Shbail
This study aims to develop cause-and-effect relationships among the critical success factors (CSFs) of fintech adoption and rank these CSFs based on their importance in the model.
Abstract
Purpose
This study aims to develop cause-and-effect relationships among the critical success factors (CSFs) of fintech adoption and rank these CSFs based on their importance in the model.
Design/methodology/approach
To achieve the objectives of the study, the Fuzzy Decision-Making Trial and Evaluation Laboratory (FDEMATEL) approach was used. The data was collected from 16 experts using a questionnaire.
Findings
The findings demonstrated the interrelationships among the CSFs. In total, 16 critical factors were recognized as causal factors, and the remaining eight were considered effect factors. The CSFs were ranked based on their importance in fintech adoption.
Originality/value
This study is novel as it investigates CSFs of fintech adoption using FDEMATEL, and it contributes to understanding the nature of these factors and how they affect fintech adoption. The findings propose a significant basis to deepen fintech adoption and deliver a clue to design a practical framework for fintech adoption.
Logistics service provider (LSP) selection involves multiple criteria, alternatives and decision makers. Group decision-making involves vagueness and uncertainty. This paper aims…
Abstract
Purpose
Logistics service provider (LSP) selection involves multiple criteria, alternatives and decision makers. Group decision-making involves vagueness and uncertainty. This paper aims to propose a novel fuzzy method for assessing and selecting agile, resilient and sustainable LSP, taking care of the inconsistency and uncertainty in subjective group ratings.
Design/methodology/approach
Eighteen agile, resilient, operational, economic, environmental and social sustainability criteria were identified from the literature and discussion with experts. Interval-valued Fermatean fuzzy (IVFF) sets are more flexible and accurate for handling complex uncertainty, impreciseness and inconsistency in group ratings. The IVFF PIvot Pairwise RElative Criteria Importance Assessment Simplified (IVFF-PIPRECIAS) and IVFF weighted aggregated sum product assessment (IVFF-WASPAS) methods are applied to determine criteria weights and LSP evaluation, respectively.
Findings
Collaboration and partnership, range of services, capacity flexibility, geographic coverage, cost of service and environmental safeguard are found to have a greater influence on the LSP selection, as per this study. The LSP (L3) with the highest score (0.949) is the best agile, resilient and sustainable LSP in the manufacturing industry.
Research limitations/implications
Hybrid IVFF-based PIPRECIAS and WASPAS methods are proposed for the selection of agile, resilient and sustainable LSP in the manufacturing industry.
Practical implications
The model can help supply chain managers in the manufacturing industry to easily adopt the hybrid model for agile, resilient and sustainable LSP selection.
Social implications
The paper also contributes to the social sustainability of logistics workers.
Originality/value
To the best of the authors’ knowledge, IVFF-PIPRECIAS and IVFF-WASPAS methods are applied for the first time to select the best agile, resilient and sustainable LSP in a developing economy context.