Search results

1 – 1 of 1
Article
Publication date: 16 February 2024

Khameel B. Mustapha, Eng Hwa Yap and Yousif Abdalla Abakr

Following the recent rise in generative artificial intelligence (GenAI) tools, fundamental questions about their wider impacts have started to reverberate around various…

Abstract

Purpose

Following the recent rise in generative artificial intelligence (GenAI) tools, fundamental questions about their wider impacts have started to reverberate around various disciplines. This study aims to track the unfolding landscape of general issues surrounding GenAI tools and to elucidate the specific opportunities and limitations of these tools as part of the technology-assisted enhancement of mechanical engineering education and professional practices.

Design/methodology/approach

As part of the investigation, the authors conduct and present a brief scientometric analysis of recently published studies to unravel the emerging trend on the subject matter. Furthermore, experimentation was done with selected GenAI tools (Bard, ChatGPT, DALL.E and 3DGPT) for mechanical engineering-related tasks.

Findings

The study identified several pedagogical and professional opportunities and guidelines for deploying GenAI tools in mechanical engineering. Besides, the study highlights some pitfalls of GenAI tools for analytical reasoning tasks (e.g., subtle errors in computation involving unit conversions) and sketching/image generation tasks (e.g., poor demonstration of symmetry).

Originality/value

To the best of the authors’ knowledge, this study presents the first thorough assessment of the potential of GenAI from the lens of the mechanical engineering field. Combining scientometric analysis, experimentation and pedagogical insights, the study provides a unique focus on the implications of GenAI tools for material selection/discovery in product design, manufacturing troubleshooting, technical documentation and product positioning, among others.

Details

Interactive Technology and Smart Education, vol. 21 no. 4
Type: Research Article
ISSN: 1741-5659

Keywords

Access

Year

Last week (1)

Content type

1 – 1 of 1