Hui Zhao, Xian Cheng, Jing Gao and Guikun Yu
Building a smart city is a necessary path to achieve sustainable urban development. Smart city public–private partnership (PPP) project is a necessary measure to build a smart…
Abstract
Purpose
Building a smart city is a necessary path to achieve sustainable urban development. Smart city public–private partnership (PPP) project is a necessary measure to build a smart city. Since there are many participants in smart city PPP projects, there are problems such as uneven distribution of risks; therefore, in order to ensure the normal construction and operation of the project, the reasonable sharing of risks among the participants becomes an urgent problem to be solved. In order to make each participant clearly understand the risk sharing of smart city PPP projects, this paper aims to establish a scientific and practical risk sharing model.
Design/methodology/approach
This paper uses the literature review method and the Delphi method to construct a risk index system for smart city PPP projects and then calculates the objective and subjective weights of each risk index through the Entropy Weight (EW) and G1 methods, respectively, and uses the combined assignment method to find the comprehensive weights. Considering the nature of the risk sharing problem, this paper constructs a risk sharing model for smart city PPP projects by initially sharing the risks of smart city PPP projects through Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to determine the independently borne risks and the jointly borne risks and then determines the sharing ratio of the jointly borne risks based on utility theory.
Findings
Finally, this paper verifies the applicability and feasibility of the risk-sharing model through empirical analysis, using the smart city of Suzhou Industrial Park as a research case. It is hoped that this study can provide a useful reference for the risk sharing of PPP projects in smart cities.
Originality/value
In this paper, the authors calculate the portfolio assignment by EW-G1 and construct a risk-sharing model by TOPSIS-Utility Theory (UT), which is applied for the first time in the study of risk sharing in smart cities.
Details
Keywords
Shi Yin, Zengying Gao and Tahir Mahmood
The aim of this study is to (1) construct a standard framework for assessing the capability of bioenergy enterprises' digital green innovation partners; (2) quantify the choice of…
Abstract
Purpose
The aim of this study is to (1) construct a standard framework for assessing the capability of bioenergy enterprises' digital green innovation partners; (2) quantify the choice of partners for digital green innovation by bioenergy enterprises; (3) propose based on a dual combination empowerment niche digital green innovation field model.
Design/methodology/approach
Fuzzy set theory is combined into field theory to investigate resource complementarity. The successful application of the model to a real case illustrates how the model can be used to address the problem of digital green innovation partner selection. Finally, the standard framework and digital green innovation field model can be applied to the practical partner selection of bioenergy enterprises.
Findings
Digital green innovation technology of superposition of complementarity, mutual trust and resources makes the digital green innovation knowledge from partners to biofuels in the enterprise. The index rating system included eight target layers: digital technology innovation level, bioenergy technology innovation level, bioenergy green level, aggregated digital green innovation resource level, bioenergy technology market development ability, co-operation mutual trust and cooperation aggregation degree.
Originality/value
This study helps to (1) construct the evaluation standard framework of digital green innovation capability based on the dual combination empowerment theory; (2) develop a new digital green innovation domain model for bioenergy enterprises to select digital green innovation partners; (3) assist bioenergy enterprises in implementing digital green innovation practices.