Search results
1 – 3 of 3Bo Wang, Yifeng Yuan, Ke Wang and Shengli Cao
Passive chipless RFID (radio frequency identification) sensors, devoid of batteries or wires for data transmission to a signal reader, demonstrate stability in severe conditions…
Abstract
Purpose
Passive chipless RFID (radio frequency identification) sensors, devoid of batteries or wires for data transmission to a signal reader, demonstrate stability in severe conditions. Consequently, employing these sensors for metal crack detection ensures ease of deployment, longevity and reusability. This study aims to introduce a chipless RFID sensor design tailored for detecting metal cracks, emphasizing tag reusability and prolonged service life.
Design/methodology/approach
The passive RFID sensor is affixed to the surface of the aluminum plate under examination, positioned over the metal cracks. These cracks alter the electrical length of the sensor, thereby influencing its amplitude-frequency characteristics. Hence, the amplitude-frequency profile generated by various metal cracks can effectively ascertain the occurrence and orientation of the cracks.
Findings
Simulation and experimental results show that the proposed crack sensing tag produces different frequency amplitude changes for four directions of cracks and can recognize the crack direction. The sensor has a small size and simple structure, which makes it easy to deploy.
Originality/value
This research aims to deploy crack detection on metallic surfaces using passive chipless RFID sensors, analyze the amplitude-frequency characteristics of crack formation and distinguish cracks of varying widths and orientations. The designed sensor boasts a straightforward structural design, facilitating ease of deployment, and offers a degree of reusability.
Details
Keywords
Yongliang Wang, Yifeng Duan, Yanpei Song and Yumeng Du
Supercritical CO2 (SC–CO2) fracturing is a potential technology that creates a complex fracturing fracture network to improve reservoir permeability. SC–CO2-driven intersections…
Abstract
Purpose
Supercritical CO2 (SC–CO2) fracturing is a potential technology that creates a complex fracturing fracture network to improve reservoir permeability. SC–CO2-driven intersections of the fracturing fracture network are influenced by some key factors, including the disturbances generated form natural fractures, adjacent multi-wells and adjacent fractures, which increase the challenges in evaluation, control and optimization of the SC–CO2 fracturing fracture networks. If the evaluation of the fracture network is not accurate and effective, the risk of oil and gas development will increase due to the microseismicity induced by multi-well SC–CO2 fracturing, which makes it challenging to control the on-site engineering practices.
Design/methodology/approach
The numerical models considering the thermal-hydro-mechanical coupling effect in multi-well SC–CO2 fracturing were established, and the typical cases considering naturally fracture and multi-wells were proposed to investigate the intersections and connections of fracturing fracture network, shear stress shadows and induced microseismic events. The quantitative results from the typical cases, such as fracture length, volume, fluid rate, pore pressure and the maximum and accumulated magnitudes of induced microseismic events, were derived.
Findings
In naturally fractured reservoirs, SC–CO2 fracturing fractures will deflect and propagate along the natural fractures, eventually intersect and connect with fractures from other wells. The quantitative results indicate that SC–CO2 fracturing in naturally fractured reservoirs produces larger fractures than the slick water as fracturing fluid, due to the ability of SC–CO2 to connect macroscopic and microscopic fractures. Compared with slick water fracturing, SC–CO2 fracturing can increase the length of fractures, but it will not increase microseismic events; therefore, SC–CO2 fracturing can improve fracturing efficiency and increase productivity, but it may not simultaneously lead to additional microseismic events.
Originality/value
The results of this study on the multi-well SC–CO2 fracturing may provide references for the fracturing design of deep oil and gas resource extraction, and provide some beneficial supports for the induced microseismic event disasters, promoting the next step of engineering application of multi-well SC–CO2 fracturing.
Details
Keywords
Ying Hu and Feng’e Zheng
The ancient town of Lijiang is a representative place of ethnic minorities in China’s southwest border area jointly built by many ethnic groups. Its rich and diversified history…
Abstract
Purpose
The ancient town of Lijiang is a representative place of ethnic minorities in China’s southwest border area jointly built by many ethnic groups. Its rich and diversified history, culture and architecture as well as its artistic and spiritual values need to be better retained and explored.
Design/methodology/approach
The protection and inheritance of Lijiang’s cultural heritage will be improved through the construction of digital memory resources. To guide Lijiang’s digital memory construction, this study explores strategies of digital memory construction by analyzing four case studies of well-known memory projects from China and America.
Findings
From the case studies analysis, factors of digital memory construction were identified and compared. Factors led to the discussion of strategies for constructing the digital memory of Lijiang within its design, construction and service phases.
Originality/value
The ancient town of Lijiang is a famous historical and cultural city in China, and it is also a representative place of ethnic minorities in the border area jointly built by many ethnic groups. The rich culture should be preserved and digitalized to offer better use for the whole nation.
Details