Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 10 October 2024

Zhaoyang Chen, Kang Min, Xinyang Fan, Baoxu Tu, Fenglei Ni and Hong Liu

This paper aims to propose a real-time evolutionary multi-objective semi-analytical inverse kinematics (IK) algorithm (EMSA-IK) for solving the multi-objective IK of redundant…

40

Abstract

Purpose

This paper aims to propose a real-time evolutionary multi-objective semi-analytical inverse kinematics (IK) algorithm (EMSA-IK) for solving the multi-objective IK of redundant manipulators.

Design/methodology/approach

Within EMSA-IK, the parameterization method is applied to reduce the number of optimization variables of the evolutionary algorithm and calculate semi-analytical solutions that meet high target pose accuracy. The original evolutionary algorithm is improved with the proposed adaptive search sub-space strategy so that the improved evolutionary algorithm can be used to efficiently perform global search within the parametric joint space to obtain the global optimal parametric joint angles that satisfy multi-objective constraints.

Findings

Ablation experiments show the effectiveness of the improved strategy used for evolutionary algorithms. Comparative experiments on different manipulators demonstrate the advantages of EMSA-IK in terms of generalizability and balancing multiple objectives, for example, motion continuity, joint limits and obstacle avoidance. Real-world experiments further validate the effectiveness of the proposed algorithm for real-time application.

Originality/value

The semi-analytical IK solution that simultaneously satisfies high target pose accuracy and multi-objective constraints can be obtained in real time. Compared to existing semi-analytical IK algorithms, the proposed algorithm achieves obstacle avoidance for the first time. The proposed algorithm demonstrates superior generalizability, applicable to not only redundant manipulators with revolute joints but also those with prismatic joints.

Details

Industrial Robot: the international journal of robotics research and application, vol. 52 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Access

Year

Last month (1)

Content type

1 – 1 of 1
Per page
102050