Search results
1 – 1 of 1Wiah Wardiningsih, Ryan Rudy, Witri Aini Salis, Rinayati Aprilia, Rachmaningsih Wardatul Jannah and Rr Wiwiek Eka Mulyani
This study aims to analyse cellulose fibres extracted from the pseudo-stems of Cymbopogon citratus and evaluate their properties in non-woven fabric production.
Abstract
Purpose
This study aims to analyse cellulose fibres extracted from the pseudo-stems of Cymbopogon citratus and evaluate their properties in non-woven fabric production.
Design/methodology/approach
The water retting method was used for fibre extraction, and intrinsic fibre qualities were examined to assess their suitability for textile applications. A thermal bonding technique, using a hot press machine and polylactic acid powder as a binder, was applied for non-woven fabric development.
Findings
The retted fibres had an average length of 156 mm and a fineness value of 5.73 tex. The fibre’s tenacity and elongation values were 1.33 gf/denier and 12.78%, respectively. Fourier transform infrared analysis confirmed the presence of major cellulose components. The fibre’s crystallinity and friction coefficient were 50% and 0.3, respectively. C. citratus fibre exhibited hygroscopic characteristics with a moisture regain of 10.65%. Experimental non-woven fabrics (70% C. citratus fibre, 30% polylactic acid powder) demonstrated consistent weight and thickness, with variations in tensile strength. Moisture regain values for non-woven fabrics were approximately 7.6%.
Originality/value
The features of C. citratus fibre, obtained with the water retting process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising of C. citratus fibre and polylactic acid powder were produced with three different pressing temperatures. The tensile strength properties of these fabrics were influenced by pressing temperature.
Details