Search results
1 – 9 of 9Dongyang Cao, Daniel Bouzolin, Christopher Paniagua, Hongbing Lu and D.Todd Griffith
Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced…
Abstract
Purpose
Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced by additive manufacturing.
Design/methodology/approach
The authors first identified appropriate printing parameters for joining segmented short beams and then used those parameters to print and fusion-join segments with different configurations of stiffeners to form a longer section of a wing or small wind turbine blade structure.
Findings
It was found that the beams with three lateral and three base stiffening ribs give the highest flexural strength among the three beams investigated. Results on joined beams annealed at different conditions showed that annealing at 70 °C for 0.5 h yields higher performance than annealing at the same temperature for longer times. It is also found that in the case of the hot-plate-welded three-dimensional (3D)-printed structures, no annealing is needed for reaching a high strength-to-weight ratio, but annealing is helpful for maximizing the modulus-to-weight ratio. Both thermal buckling and edge wrapping were observed under annealing at 70°C for 0.5 h for 3D-printed beams comprising two lateral and four base stiffening plates.
Originality/value
Fusion-joining of additively manufactured segments is needed owing to the constraint in building volume of a typical commercial 3D-printer. However, study of the effect of process parameters is needed to quantify their effect on mechanical performance. This investigation has therefore identified key printing parameters and annealing conditions for fusion-joining short segments to form larger structures, from multiple 3D-printed sections, such as wind blade structures.
Details
Keywords
Nepal Chandra Roy, Md. Mahmudul Hassan and Saeed Dinarvand
This study aims to analyze the thermo-hydrodynamic characteristics for the mixed convection boundary layer flow of three-particle aqueous nanofluid on a shrinking porous plate…
Abstract
Purpose
This study aims to analyze the thermo-hydrodynamic characteristics for the mixed convection boundary layer flow of three-particle aqueous nanofluid on a shrinking porous plate with the influences of thermal radiation and magnetic field.
Design/methodology/approach
The basic equations have been normalized with the help of similarity transformations. The obtained equations have been solved numerically using the shooting method in conjunction with the sixth-order Runge–Kutta technique. Numerical results for the velocity and temperature are illustrated with varying relevant parameters.
Findings
The results reveal that the local drag coefficient increases with higher values of the magnetic field parameter, nanoparticle volume fraction and suction parameter. On the other hand, boosting the radiation parameter and nanoparticle concentration notably enhances heat transfer. Furthermore, it is noted that the suction parameter and magnetic field parameter both lead to an increase in velocity and promote the occurrence of dual solutions within the problem conditions.
Research limitations/implications
The limitations are that the model is appropriate for thermal equilibrium of base fluid and nanoparticles, and constant thermo-physical properties.
Originality/value
To the best of the authors' knowledge, no study has taken an attempt to predict the flow and heat transfer characteristics of unsteady mixed convection ternary hybrid nanofluid flow over a shrinking sheet, particularly under the influence of magnetic field and radiation. The findings obtained here may hold particular significance for those interested in the underlying theoretical and practical implications.
Details
Keywords
Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha
The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…
Abstract
Purpose
The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.
Design/methodology/approach
The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.
Findings
The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.
Originality/value
AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.
Details
Keywords
Nihar Gonsalves, Omobolanle Ruth Ogunseiju and Abiola Abosede Akanmu
Recognizing construction workers' activities is critical for on-site performance and safety management. Thus, this study presents the potential of automatically recognizing…
Abstract
Purpose
Recognizing construction workers' activities is critical for on-site performance and safety management. Thus, this study presents the potential of automatically recognizing construction workers' actions from activations of the erector spinae muscles.
Design/methodology/approach
A lab study was conducted wherein the participants (n = 10) performed rebar task, which involved placing and tying subtasks, with and without a wearable robot (exoskeleton). Trunk muscle activations for both conditions were trained with nine well-established supervised machine learning algorithms. Hold-out validation was carried out, and the performance of the models was evaluated using accuracy, precision, recall and F1 score.
Findings
Results indicate that classification models performed well for both experimental conditions with support vector machine, achieving the highest accuracy of 83.8% for the “exoskeleton” condition and 74.1% for the “without exoskeleton” condition.
Research limitations/implications
The study paves the way for the development of smart wearable robotic technology which can augment itself based on the tasks performed by the construction workers.
Originality/value
This study contributes to the research on construction workers' action recognition using trunk muscle activity. Most of the human actions are largely performed with hands, and the advancements in ergonomic research have provided evidence for relationship between trunk muscles and the movements of hands. This relationship has not been explored for action recognition of construction workers, which is a gap in literature that this study attempts to address.
Details
Keywords
This paper aims to discuss the scholarship over the past 30 years on what used to be called Melanesian warfare or “tribal fighting” and is termed in this paper “intergroup…
Abstract
Purpose
This paper aims to discuss the scholarship over the past 30 years on what used to be called Melanesian warfare or “tribal fighting” and is termed in this paper “intergroup conflict” in the Highlands of Papua New Guinea. The paper categorises the drivers of intergroup conflict that make up the landscape for conflict in the Highlands. It starts with cultural factors and the understandings about conflict that have long been used to explain such violence, then adds newer factors. It argues that while the individual existence of each driver is important, far more important is the way in which they interact with each other in reinforcing feedback loops that propel the actors involved towards violence.
Design/methodology/approach
The paper is based on a thorough review of the scholarly and grey literature on the topic, drawing from the fields of anthropology, criminology, political science, law, justice and peacebuilding.
Findings
The overall finding of the paper is that the nature of intergroup conflict, its scale and dynamics, has changed considerably over the past 30 years, most prominently in the entanglement of the state with local-level conflicts. This has significantly affected the nature of intergroup conflict today, deepening the attractors towards violence and conflict, while weakening the ability of existing state and non-state systems to prevent it. The picture that emerges is one in which the interconnectivity of factors promoting violence has intensified, the rate of change is accelerating and levels of violence are amplified.
Originality/value
This paper is an original work.
Details
Keywords
Ouided Dehas, Laidi Babouri, Yasmina Biskri and Jean-Francois Bardeau
This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate…
Abstract
Purpose
This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate (PET) fibers as new fillers.
Design/methodology/approach
UPR/PET fibers composites have been developed as mats by incorporating 5, 8, 13 and 18 parts per hundred of rubber (phr) of 6-, 10- and 15-mm length PET fibers from the recycling of postconsumer bottles. The mechanical and physical properties of the composites were investigated as a function of fiber content and length. A significant increase in stress at break and in ultimate stress (sr) were observed for composites reinforced with 5 and 8 phr of 15-mm length PET fibers. The Izod impact strength of UPR/mat PET fiber composites as a function of fiber rate and length showed that the 5 and 8 phr composites for the 15-mm length PET fiber have the optimal mechanical properties 13.55 and 10.50 Kj/m2, respectively. The morphological study showed that the strong adhesion resulting from the affinity of the PET fiber for the UPR matrix. The ductile fracture of materials reinforced with 5 and 8 phr is confirmed by the fiber deformation and fracture surface roughness.
Findings
This study concluded that the PET fiber enhances the properties of composites, a good correlation was observed between the results of the mechanical tests and the structural analysis revealing that for the lower concentrations, the PET fibers are well dispersed into the resin, but entanglements are evidenced when the fiber content increases.
Originality/value
It can be shown from scanning electron microscopy micrographs that the fabrication technique produced composites with good interfacial adhesion between PET fibers and UPR matrix.
Details
Keywords
Prabhugouda Mallanagouda Patil, Bharath Goudar and Ebrahim Momoniat
Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to…
Abstract
Purpose
Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to numerically study the Casson-Williamson THNF flow over a yawed cylinder, considering the effects of several slips and an inclined magnetic field. The THNF comprises Al2O3-TiO2-SiO2 nanoparticles because they improve heat transmission due to large thermal conductivity.
Design/methodology/approach
Applying suitable nonsimilarity variables transforms the coupled highly dimensional nonlinear partial differential equations (PDEs) into a system of nondimensional PDEs. To accomplish the goal of achieving the solution, an implicit finite difference approach is used in conjunction with Quasilinearization. With the assistance of a script written in MATLAB, the numerical results and the graphical representation of those solutions were ascertained.
Findings
As the Casson parameter
Originality/value
There is no existing research on the effects of Casson-Williamson THNF flow over a yawed cylinder with multiple slips and an angled magnetic field, according to the literature.
Details
Keywords
Madhura Rao, Lea Bilić, Aalt Bast and Alie de Boer
In this case study, we examine how a citrus peel valorising company based in the Netherlands was able to adopt a circular business model while navigating regulatory, managerial…
Abstract
Purpose
In this case study, we examine how a citrus peel valorising company based in the Netherlands was able to adopt a circular business model while navigating regulatory, managerial, and supply chain-related barriers.
Design/methodology/approach
In-depth, semi-structured interviews with key personnel in the company, notes from field observations, photographs of the production process, and documents from a legal judgement served as data for this single, qualitative case study. Data were coded inductively using the in vivo technique and were further developed into four themes and a case description.
Findings
Results from our study indicate that the regulatory and political contexts in the Netherlands were critical to the company’s success. Like in the case of most fruitful industrial symbioses, partnerships founded on mutual trust and economically appealing value propositions played a crucial role in ensuring commercial viability. Collaborating with larger corporations and maintaining transparent communication with stakeholders were also significant contributing factors. Lastly, employees’ outlook towards circularity combined with their willingness to learn new skills were important driving factors as well.
Originality/value
In addition to expanding the scholarship on the adoption of circular business models, this research offers novel insights to policymakers and practitioners. It provides empirical evidence regarding the importance of public awareness, adaptable legislation, and harmonised policy goals for supporting sustainable entrepreneurship in the circular economy.
Details
Keywords
Lingxiao Ouyang, Hao Wang, Kenta Aoyagi, Yuji Imamiya, Yufan Zhao and Akihiko Chiba
This paper aims to investigate the relationship between in situ monitoring characteristics and surface defects in laser-based directed energydeposited Ti-6Al-4V.
Abstract
Purpose
This paper aims to investigate the relationship between in situ monitoring characteristics and surface defects in laser-based directed energydeposited Ti-6Al-4V.
Design/methodology/approach
In situ monitoring was conducted to extract and quantify the monitoring characteristics of each frame. A two-dimensional contour map was generated using the quantified characteristics to determine the defect formation locations. Computational thermal-fluid dynamics software was used to determine which surface tension terms or shielding gas had a significant effect on the depression of the molten pool.
Findings
This study has made a significant contribution by revealing the direct correlation between the molten pool size and brightness with defect formation in laser-based DED of Ti-6Al-4V. It was found that in regions of reduced height, the molten pool exhibited increased size and brightness, leading to surface depressions due to vapor recoil pressure flattening the molten pool. Moreover, the results highlighted that the enhanced Marangoni forces, caused by a high-temperature gradient, hindered the proper accumulation of molten metal, exacerbating height reductions. This insight provides a deeper understanding of how molten pool dynamics directly influence surface quality, which is a critical factor in DED processes.
Originality/value
This study contributes to understanding of the relationship between in situ monitoring characteristics and surface defects in laser-based directed energy-deposited Ti-6Al-4V. Additionally, by using in situ monitoring and computational analysis, significant insights were gained into the factors influencing molten pool behavior and subsequent surface defects.
Details