Search results

1 – 1 of 1
Article
Publication date: 13 November 2024

Jinsong Zhang, Wenqian Xi, Shuopeng Li, Hewei Liu and Zhenwei Huang

For underwater hydraulic machinery, the unique structure significantly enhances the three-dimensional non-uniformity of turbulence within the flow domain and high Reynolds number…

Abstract

Purpose

For underwater hydraulic machinery, the unique structure significantly enhances the three-dimensional non-uniformity of turbulence within the flow domain and high Reynolds number turbulence introduces complex effects on the machinery. Therefore, studying the turbulent flow characteristics in underwater hydraulic machinery is crucial for system stability.

Design/methodology/approach

This paper conducts a numerical analysis on a specific type of underwater hydraulic machinery. A numerical calculation model is established under stable inflow conditions to analyze the flow trends and pressure changes at different flow speeds. Subsequently, structural modifications are made to the underwater hydraulic machinery, and the characteristics of the velocity field, pressure field and vorticity distribution under different model parameters are analyzed.

Findings

The results indicate that changes in internal structure have a certain impact on flow characteristics. When the structural changes are significant, the fluid flow becomes more complex and pressure fluctuations become more intense. The research findings provide a scientific basis and theoretical guidance for the structural design of underwater hydraulic machinery and have significant research implications for controlling fluid-induced noise.

Originality/value

Affected by the inherent structural characteristics of the flow channel structure, the flow direction of the high-speed water flow changes drastically in the flow channel, so it is of great significance to study its flow characteristics for the stability of the system.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 1 of 1