Search results
1 – 2 of 2Sana Goher, Zaheer Abbas and Muhammad Yousuf Rafiq
The boundary layer flow of immiscible fluids plays a crucial role across various industries, influencing advancements in industrial processes, environmental systems, healthcare…
Abstract
Purpose
The boundary layer flow of immiscible fluids plays a crucial role across various industries, influencing advancements in industrial processes, environmental systems, healthcare and more. This study explores the thermally radiative boundary layer flow of a shear-driven Ree–Eyring fluid over a nanofluid. The investigation offers valuable insights into the intricate dynamics and heat transfer behavior that arise when a nanofluid, affected by thermal radiation, interacts with a non-Newtonian Ree–Eyring fluid. This analysis contributes to a deeper understanding of the complex interactions governing such systems, which is essential for enhancing efficiency and innovation in multiple applications.
Design/methodology/approach
The simulation investigates the convergence of boundary layers under varying shear strengths. A comparative analysis is conducted using
Findings
The temperature of the Al2O3 nanoparticles is always higher than the
Originality/value
The results stated are original and new with the thermal radiative boundary layer flow of two immiscible Ree–Eyring fluid and Al2O3/
Details
Keywords
Atanu Roy, Sabyasachi Pramanik, Kalyan Mitra and Manashi Chakraborty
Emissions have significant environmental impacts. Hence, minimizing emissions is essential. This study aims to use a hybrid neural network model to predict carbon monoxide (CO…
Abstract
Purpose
Emissions have significant environmental impacts. Hence, minimizing emissions is essential. This study aims to use a hybrid neural network model to predict carbon monoxide (CO) and nitrogen oxide (NOx) emissions from gas turbines (GTs) to enhance emission prediction for GTs in predictive emissions monitoring systems (PEMS).
Design/methodology/approach
The hybrid model architecture combines convolutional neural networks (CNN) and bidirectional long-short-term memory (Bi-LSTM) networks called CNN-BiLSTM with modified extrinsic attention regression. Over five years, data from a GT power plant was uploaded to Google Colab, split into training and testing sets (80:20), and evaluated using test matrices. The model’s performance was benchmarked against state-of-the-art emissions prediction methodologies.
Findings
The model showed promising results for GT CO and NOx emissions. CO predictions had a slight underestimation bias of −0.01, with root mean-squared error (RMSE) of 0.064, mean absolute error (MAE) of 0.04 and R2 of 0.82. NOx predictions had an RMSE of 0.051, MAE of 0.036, R2 of 0.887 and a slight overestimation bias of +0.01.
Research limitations/implications
While the model demonstrates relative accuracy in CO emission predictions, there is potential for further improvement in future research.
Practical implications
Implementing the model in real-time PEMS and establishing a continuous feedback loop will ensure accuracy in real-world applications, enhance GT functioning and reduce emissions, fuel consumption and running costs.
Social implications
Accurate GT emissions predictions support stricter emission standards, promote sustainable development goals and ensure a healthier societal environment.
Originality/value
This paper presents a novel approach that integrates CNN and Bi-LSTM networks. It considers both spatial and temporal data to mitigate previous prediction shortcomings.
Details