Search results
1 – 2 of 2Haitao Liu, Junfu Zhou, Guangxi Li, Juliang Xiao and Xucang Zheng
This paper aims to present a new trajectory scheduling method to generate a smooth and continuous trajectory for a hybrid machining robot.
Abstract
Purpose
This paper aims to present a new trajectory scheduling method to generate a smooth and continuous trajectory for a hybrid machining robot.
Design/methodology/approach
The trajectory scheduling method includes two steps. First, a G3 continuity local smoothing approach is proposed to smooth the toolpath. Then, considering the tool/joint motion and geometric error constraints, a jerk-continuous feedrate scheduling method is proposed to generate the trajectory.
Findings
The simulations and experiments are conducted on the hybrid robot TriMule-800. The simulation results demonstrate that this method is effectively applicable to machining trajectory scheduling for various parts and is computationally friendly. Moreover, it improves the robot machining speed and ensures smooth operation under constraints. The results of the S-shaped part machining experiment show that the resulting surface profile error is below 0.12 mm specified in the ISO standard, confirming that the proposed method can ensure the machining accuracy of the hybrid robot.
Originality/value
This paper implements an analytical local toolpath smoothing approach to address the non-high-order continuity problem of the toolpath expressed in G code. Meanwhile, the feedrate scheduling method addresses the segmented paths after local smoothing, achieving smooth and continuous trajectory generation to balance machining accuracy and machining efficiency.
Details
Keywords
Haitao Wu, Wenyan Zhong, Botao Zhong, Heng Li, Jiadong Guo and Imran Mehmood
Blockchain has the potential to facilitate a paradigm shift in the construction industry toward effectiveness, transparency and collaboration. However, there is currently a…
Abstract
Purpose
Blockchain has the potential to facilitate a paradigm shift in the construction industry toward effectiveness, transparency and collaboration. However, there is currently a paucity of empirical evidence from real-world construction projects. This study aims to systematically review blockchain adoption barriers, investigate critical ones and propose corresponding solutions.
Design/methodology/approach
An integrated method was adopted in this research based on the technology–organization–environment (TOE) theory and fuzzy decision-making trial and evaluation laboratory (DEMATEL) approach. Blockchain adoption barriers were first presented using the TOE framework. Then, key barriers were identified based on the importance and causality analysis in the fuzzy DEMATEL. Several suggestions were proposed to facilitate blockchain diffusion from the standpoints of the government, the industry and construction organizations.
Findings
The results highlighted seven key barriers. Specifically, the construction industry is more concerned with environmental barriers, such as policy uncertainties (E2) and technology maturity (E3), while most technical barriers are causal factors, such as “interoperability (T4)” and “smart contracts' security (T2)”.
Practical implications
This study contributes to a better understanding of the problem associated with blockchain implementation and provides policymakers with recommendations.
Originality/value
Identified TOE barriers lay the groundwork for theoretical observations to comprehend the blockchain adoption problem. This research also applied the fuzzy method to blockchain adoption barrier analysis, which can reduce the uncertainty and subjectivity in expert evaluations with a small sample.
Details