Search results
1 – 10 of 857Yuhan Li, Qun Luo, Shiyu Zhao, Wenyan Qi, Zhong Huang and Guiming Mei
The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to…
Abstract
Purpose
The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to offer valuable insights for research concerning the adaptability of pantograph-catenary systems on double-stack high container transportation lines.
Design/methodology/approach
Eight pantograph models were formulated based on lines with the contact wire of 6,680 mm in height. The aerodynamic calculations were carried out using the SST k-ω separated vortex model. A more improved aerodynamic uplift force method was also presented. The change rule of the aerodynamic uplift force under different working heights of the pantograph was analyzed according to the transfer coefficients of the aerodynamic forces and moments.
Findings
The results show that the absolute values of the aerodynamic forces and moments of the upper and lower frame increase with the working height, whereas those of the collector head do not change. The absolute values of the transfer coefficients of the lower frame and link arm were significantly larger than those of the upper frame. Therefore, the absolute value of the aerodynamic uplift force increased and then decreased with the working height. The maximum value occurred at a working height of 2,400 mm.
Originality/value
A new method for calculating the aerodynamic uplift force of pantographs is proposed. The specifical change rule of the aerodynamic uplift force of the pantograph on double-stack high container transportation lines was determined from the perspective of the transfer coefficients of the aerodynamic forces and moments.
Details
Keywords
Yang Li, Zhicheng Zheng, Yaochen Qin, Haifeng Tian, Zhixiang Xie and Peijun Rong
Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in…
Abstract
Purpose
Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in environmentally sensitive areas of China (ESAC). However, the phases and periodicity of drought changes in the ESAC remain largely unknown. Thus, this paper aims to identify the periodic characteristics of meteorological drought changes.
Design/methodology/approach
The potential evapotranspiration was calculated using the Penman–Monteith formula recommended by the Food and Agriculture Organization of the United Nations, whereas the standardized precipitation evaporation index (SPEI) of drought was simulated by coupling precipitation data. Subsequently, the Bernaola-Galvan segmentation algorithm was proposed to divide the periods of drought change and the newly developed extreme-point symmetric mode decomposition to analyze the periodic drought patterns.
Findings
The findings reveal a significant increase in SPEI in the ESAC, with the rate of decline in drought events higher in the ESAC than in China, indicating a more pronounced wetting trend in the study area. Spatially, the northeast region showed an evident drying trend, whereas the southwest region showed a wetting trend. Two abrupt changes in the drought pattern were observed during the study period, namely, in 1965 and 1983. The spatial instability of moderate or severe drought frequency and intensity on a seasonal scale was more consistent during 1966–1983 and 1984–2018, compared to 1961–1965. Drought variation was predominantly influenced by interannual oscillations, with the periods of the components of intrinsic mode functions 1 (IMF1) and 2 (IMF2) being 3.1 and 7.3 years, respectively. Their cumulative variance contribution rate reached 70.22%.
Research limitations/implications
The trend decomposition and periods of droughts in the study area were analyzed, which may provide an important scientific reference for water resource management and agricultural production activities in the ESAC. However, several problems remain unaddressed. First, the SPEI considers only precipitation and evapotranspiration, making it extremely sensitive to temperature increases. It also ignores the nonstationary nature of the hydrometeorological water process; therefore, it is prone to bias in drought detection and may overestimate the intensity and duration of droughts. Therefore, further studies on the application and comparison of various drought indices should be conducted to develop a more effective meteorological drought index. Second, the local water budget is mainly affected by surface evapotranspiration and precipitation. Evapotranspiration is calculated by various methods that provide different results. Therefore, future studies need to explore both the advantages and disadvantages of various evapotranspiration calculation methods (e.g. Hargreaves, Thornthwaite and Penman–Monteith) and their application scenarios. Third, this study focused on the temporal and spatial evolution and periodic characteristics of droughts, without considering the driving mechanisms behind them and their impact on the ecosystem. In future, it will be necessary to focus on a sensitivity analysis of drought indices with regard to climate change. Finally, although this study calculated the SPEI using meteorological data provided by China’s high-density observatory network, deviations and uncertainties were inevitable in the point-to-grid spatialization process. This shortcoming may be avoided by using satellite remote sensing data with high spatiotemporal resolution in the future, which can allow pixel-scale monitoring and simulation of meteorological drought evolution.
Practical implications
Under the background of continuous global warming, the climate in arid and semiarid areas of China has shown a trend of warming and wetting. It means that the plant environment in this region is getting better. In the future, the project of afforestation and returning farmland to forest and grassland in this region can increase the planting proportion of water-loving tree species to obtain better ecological benefits. Meanwhile, this study found that in the relatively water-scarce regions of China, drought duration was dominated by interannual oscillations (3.1a and 7.3a). This suggests that governments and nongovernmental organizations in the region should pay attention to the short drought period in the ESAC when they carry out ecological restoration and protection projects such as the construction of forest reserves and high-quality farmland.
Originality/value
The findings enhance the understanding of the phasic and periodic characteristics of drought changes in the ESAC. Future studies on the stress effects of drought on crop yield may consider these effects to better reflect the agricultural response to meteorological drought and thus effectively improve the tolerance of agricultural activities to drought events.
Details
Keywords
Yahui Zhang, Aimin Li, Haopeng Li, Fei Chen and Ruiying Shen
Wheeled robots have been widely used in People’s Daily life. Accurate positioning is the premise of autonomous navigation. In this paper, an optimization-based…
Abstract
Purpose
Wheeled robots have been widely used in People’s Daily life. Accurate positioning is the premise of autonomous navigation. In this paper, an optimization-based visual-inertial-wheel odometer tightly coupled system is proposed, which solves the problem of failure of visual inertia initialization due to unobservable scale.The aim of this paper is to achieve robust localization of visually challenging scenes.
Design/methodology/approach
During system initialization, the wheel odometer measurement and visual-inertial odometry (VIO) fusion are initialized using maximum a posteriori (MAP). Aiming at the visual challenge scene, a fusion method of wheel odometer and inertial measurement unit (IMU) measurement is proposed, which can still be robust initialization in the scene without visual features. To solve the problem of low track accuracy caused by cumulative errors of VIO, the local and global positioning accuracy is improved by integrating wheel odometer data. The system is validated on a public data set.
Findings
The results show that our system performs well in visual challenge scenarios, can achieve robust initialization with high efficiency and improves the state estimation accuracy of wheeled robots.
Originality/value
To realize robust initialization of wheeled robot, wheel odometer measurement and vision-inertia fusion are initialized using MAP. Aiming at the visual challenge scene, a fusion method of wheel odometer and IMU measurement is proposed. To improve the accuracy of state estimation of wheeled robot, wheel encoder measurement and plane constraint information are added to local and global BA, so as to achieve refined scale estimation.
Details
Keywords
Yiweng Yang, Hui Zhang, Xiaobo Tao, Xuehong Ji and Jipeng Li
The purpose is to investigate how to create a new premium new energy vehicle brand.
Abstract
Purpose
The purpose is to investigate how to create a new premium new energy vehicle brand.
Design/methodology/approach
This study employed a two-stage design. Firstly, a single-case study of NIO was undertaken to execute a thematic analysis, from which propositions were proposed and a theoretical model was constructed. Subsequently, quantitative data were collected through the questionnaire method to empirically test the model developed in the first stage.
Findings
NIO creates great user experience through four aspects: product, service, digital touchpoints and lifestyle. Functional experience is shaped by product and digital touchpoints, while emotional experience is affected by service and lifestyle. NIO wins extremely high user satisfaction through great user experience. User satisfaction is affected by both functional and emotional experience. Taking extremely satisfied users as the core, NIO leverages word-of-mouth recommendations to increase brand awareness and build premium brand image, so as to achieve high performance in the long term.
Originality/value
This study contributes to the literature by proposing and testing a theoretical model of creating a new premium new energy vehicle brand. It highlights the significance of emotional factors in the process of creating a new premium brand. It proposes employing the “ripple model” to translate user satisfaction into financial performance. It provides a three-step guide to creating a new premium brand for managers.
Details
Keywords
Sen Li, He Guan, Xiaofei Ma, Hezhao Liu, Dan Zhang, Zeqi Wu and Huaizhou Li
To address the issues of low localization and mapping accuracy, as well as map ghosting and drift, in indoor degraded environments using light detection and ranging-simultaneous…
Abstract
Purpose
To address the issues of low localization and mapping accuracy, as well as map ghosting and drift, in indoor degraded environments using light detection and ranging-simultaneous localization and mapping (LiDAR SLAM), a real-time localization and mapping system integrating filtering and graph optimization theory is proposed. By incorporating filtering algorithms, the system effectively reduces localization errors and environmental noise. In addition, leveraging graph optimization theory, it optimizes the poses and positions throughout the SLAM process, further enhancing map accuracy and consistency. The purpose of this study resolves common problems such as map ghosting and drift, thereby achieving more precise real-time localization and mapping results.
Design/methodology/approach
The system consists of three main components: point cloud data preprocessing, tightly coupled inertial odometry based on filtering and backend pose graph optimization. First, point cloud data preprocessing uses the random sample consensus algorithm to segment the ground and extract ground model parameters, which are then used to construct ground constraint factors in backend optimization. Second, the frontend tightly coupled inertial odometry uses iterative error-state Kalman filtering, where the LiDAR odometry serves as observations and the inertial measurement unit preintegration results as predictions. By constructing a joint function, filtering fusion yields a more accurate LiDAR-inertial odometry. Finally, the backend incorporates graph optimization theory, introducing loop closure factors, ground constraint factors and odometry factors from frame-to-frame matching as constraints. This forms a factor graph that optimizes the map’s poses. The loop closure factor uses an improved scan-text-based loop closure detection algorithm for position recognition, reducing the rate of environmental misidentification.
Findings
A SLAM system integrating filtering and graph optimization technique has been proposed, demonstrating improvements of 35.3%, 37.6% and 40.8% in localization and mapping accuracy compared to ALOAM, lightweight and ground optimized lidar odometry and mapping and LiDAR inertial odometry via smoothing and mapping, respectively. The system exhibits enhanced robustness in challenging environments.
Originality/value
This study introduces a frontend laser-inertial odometry tightly coupled filtering method and a backend graph optimization method improved by loop closure detection. This approach demonstrates superior robustness in indoor localization and mapping accuracy.
Details
Keywords
Saeed Loghman and Azita Zahiriharsini
Research focusing on psychological capital (PsyCap) has been mainly conducted at the individual level. However, recent research has expanded investigations to the collective level…
Abstract
Research focusing on psychological capital (PsyCap) has been mainly conducted at the individual level. However, recent research has expanded investigations to the collective level with a greater focus on team-level PsyCap. Although, as demonstrated by recent systematic reviews and meta-analyses, the relationships between individual-level PsyCap and the desirable/undesirable outcomes are fairly established in the literature, less is known about such relationships for team-level PsyCap. One of these important, yet least investigated, research areas is the research stream that focuses on the relationship between team-level PsyCap and the outcomes of health, Well-Being, and safety. This chapter aims to highlight the role of individual-level PsyCap as an important predictor of employees’ health, Well-Being, and safety outcomes, but also to go beyond that to provide insights into the potential role of team-level PsyCap in predicting such outcomes at both individual and team levels. To do so, the chapter first draws upon relevant theories to discuss the empirical research findings focusing on the relationship between individual-level PsyCap and the outcomes of health, Well-Being, and safety. It then focuses on team-level PsyCap from theoretical, conceptualization, and operationalization perspectives and provides insights into how team-level PsyCap might be related to health, Well-Being, and safety outcomes at both individual and team levels. Thus, this chapter proposes new research directions in an area of PsyCap that has been left unexplored.
Details
Keywords
Sijie Tong, Qingchen Liu, Qichao Ma and Jiahu Qin
This paper aims to address the safety concerns of path-planning algorithms in dynamic obstacle warehouse environments. It proposes a method that uses improved artificial potential…
Abstract
Purpose
This paper aims to address the safety concerns of path-planning algorithms in dynamic obstacle warehouse environments. It proposes a method that uses improved artificial potential fields (IAPF) as expert knowledge for an improved deep deterministic policy gradient (IDDPG) and designs a hierarchical strategy for robots through obstacle detection methods.
Design/methodology/approach
The IAPF algorithm is used as the expert experience of reinforcement learning (RL) to reduce the useless exploration in the early stage of RL training. A strategy-switching mechanism is introduced during training to adapt to various scenarios and overcome challenges related to sparse rewards. Sensor inputs, including light detection and ranging data, are integrated to detect obstacles around waypoints, guiding the robot toward the target point.
Findings
Simulation experiments demonstrate that the integrated use of IDDPG and the IAPF method significantly enhances the safety and training efficiency of path planning for mobile robots.
Originality/value
This method enhances safety by applying safety domain judgment rules to improve APF’s security and designing an obstacle detection method for better danger anticipation. It also boosts training efficiency through using IAPF as expert experience for DDPG and the classification storage and sampling design for the RL experience pool. Additionally, adjustments to the actor network’s update frequency expedite convergence.
Details
Keywords
This study aims to explore how perceived anthropomorphism, perceived warmth, and customer–artificial intelligence (AI) assisted exchange (CAIX) of service robots affect customers’…
Abstract
Purpose
This study aims to explore how perceived anthropomorphism, perceived warmth, and customer–artificial intelligence (AI) assisted exchange (CAIX) of service robots affect customers’ satisfaction via digital marketing innovation.
Design/methodology/approach
A customer satisfaction model was formulated based on the perspective of parasocial relationships and hybrid intelligence; 236 completed questionnaires were returned by partial least squares structural equation modeling analysis.
Findings
This study demonstrates that perceived anthropomorphism, perceived warmth and CAIX's impact on digital marketing innovation were supported, and customer satisfaction impacted the continued intention to use service robots.
Originality/value
Restaurants that leverage service robots differentiate themselves from competitors by offering innovative and technologically advanced dining experiences. Integrating AI capabilities sets these restaurants apart and attracts tech-savvy customers who value convenience and efficiency.
Details
Keywords
Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai
The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…
Abstract
Purpose
The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.
Design/methodology/approach
By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.
Findings
The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.
Practical implications
The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.
Originality/value
A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.
Details
Keywords
Wei-Chao Yang, Guo-Zhi Li, E Deng, De-Hui Ouyang and Zhi-Peng Lu
Sustainable urban rail transit requires noise barriers. However, these barriers’ durability varies due to the differing aerodynamic impacts they experience. The purpose of this…
Abstract
Purpose
Sustainable urban rail transit requires noise barriers. However, these barriers’ durability varies due to the differing aerodynamic impacts they experience. The purpose of this paper is to investigate the aerodynamic discrepancies of trains when they meet within two types of rectangular noise barriers: fully enclosed (FERNB) and semi-enclosed with vertical plates (SERNBVB). The research also considers the sensitivity of the scale ratio in these scenarios.
Design/methodology/approach
A 1:16 scaled moving model test analyzed spatiotemporal patterns and discrepancies in aerodynamic pressures during train meetings. Three-dimensional computational fluid dynamics models, with scale ratios of 1:1, 1:8 and 1:16, used the improved delayed detached eddy simulation turbulence model and slip grid technique. Comparing scale ratios on aerodynamic pressure discrepancies between the two types of noise barriers and revealing the flow field mechanism were done. The goal is to establish the relationship between aerodynamic pressure at scale and in full scale.
Findings
The aerodynamic pressure on SERNBVB is influenced by the train’s head and tail waves, whereas for FERNB, it is affected by pressure wave and head-tail waves. Notably, SERNBVB's aerodynamic pressure is more sensitive to changes in scale ratio. As the scale ratio decreases, the aerodynamic pressure on the noise barrier gradually increases.
Originality/value
A train-meeting moving model test is conducted within the noise barrier. Comparison of aerodynamic discrepancies during train meets between two types of rectangular noise barriers and the relationship between the scale and the full scale are established considering the modeling scale ratio.
Details