Search results
1 – 2 of 2Yongming Wang, Jinlong Wang, Qi Zhou, Sai Feng and Xiaomin Wang
This study aims to address the issues of limited pipe diameter adaptability and low inspection efficiency of current pipeline inspection robots, a new type of pipeline inspection…
Abstract
Purpose
This study aims to address the issues of limited pipe diameter adaptability and low inspection efficiency of current pipeline inspection robots, a new type of pipeline inspection robot capable of adapting to various pipe diameters was designed.
Design/methodology/approach
The diameter-changing mechanism uses a multilink elastic telescopic structure consisting of telescopic rods, connecting rods and wheel frames, driven by a single motor with a helical drive scheme. A geometric model of the position relationships of the hinge points was established based on the two extreme positions of the diameter-changing mechanism.
Findings
A pipeline inspection robot was designed using a simple linkage agency, which significantly reduced the weight of the robot and enhanced its adaptive pipe diameter ability. The analysis determined that the robot could accommodate pipe diameters ranging from 332 mm to 438 mm. A static equilibrium equation was established for the robot in the hovering state, and the minimum pressing force of the wheels against the pipe wall was determined to be 36.68 N. After experimental testing, the robots could successfully pass a height of 15 mm, demonstrating the good obstacle capacity of the robot.
Practical implications
This paper explores and proposes a new type of multilink elastic telescopic variable diameter pipeline inspection robot, which has the characteristics of strong adaptability and flexible operation, which makes it more competitive in the field of pipeline inspection robots and has great potential market value.
Originality/value
The robot is characterized by the innovative design of a multilink elastic telescopic structure and the use of a single motor to drive the wheel for spiral motion. On the basis of reducing the weight of the robot, it has good pipeline adaptability, climbing ability and obstacle-crossing ability.
Details
Keywords
This study evaluates the two-way relationship between digital capabilities and market competitiveness along with the twofold mediation of circular economy, business model…
Abstract
Purpose
This study evaluates the two-way relationship between digital capabilities and market competitiveness along with the twofold mediation of circular economy, business model innovation (BMI) and energy policies based on the dynamic capability and ecological modernization theories.
Design/methodology/approach
Data were compiled through questionnaire-based survey from the top management of new ventures and evaluated through partial least squares structural equation modeling to find results.
Findings
The study discovered a two-way relationship between digital capabilities and market competitiveness among new ventures along with the twofold mediation of circular economy and BMI. Surprisingly, the energy policies have no twofold mediation.
Practical implications
The findings have important implications for policy and guide the practitioners to focus on digital efficiencies to attain higher competitive advantage in the light of environmental initiatives.
Originality/value
Although past research has paid wide attention to the defined factors, but to the best of the author’s knowledge, this is the first study in these domains.
Details