Search results
1 – 2 of 2Yimei Chen, Yixin Wang, Baoquan Li and Tohru Kamiya
The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm…
Abstract
Purpose
The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.
Design/methodology/approach
This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.
Findings
The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.
Originality/value
In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.
Details
Keywords
Yixin Qiu, Ying Tang, Xiaohang Ren, Andrea Moro and Farhad Taghizadeh-Hesary
This study aims to investigate the relationship between corporate environmental responsibility (CER) and risk-taking in Chinese A-share listed companies from 2011 to 2020. It…
Abstract
Purpose
This study aims to investigate the relationship between corporate environmental responsibility (CER) and risk-taking in Chinese A-share listed companies from 2011 to 2020. It seeks to understand the influence of CER on risk-taking behavior and explore potential moderating factors.
Design/methodology/approach
A quantitative approach is used, using data from Chinese A-share listed companies over the specified period. Regression analysis is used to examine the relationship between CER and risk-taking, while considering moderating variables such as performance aspiration, environmental enrichment and contextual factors.
Findings
The findings indicate that CER positively influences corporate risk-taking, with significant impacts on information asymmetry and corporate reputation. Moreover, positive performance aspiration strengthens the effect of CER on risk-taking, while negative performance aspiration and environmental enrichment weaken this effect. Cross-sectional analysis shows that the positive association between CER and risk-taking is more prominent for firms located in areas with strict environmental regulation, for nonstate-owned firms, and for firms with higher levels of internal control.
Originality/value
This research contributes to the literature by providing insights into the dynamics between CER and risk-taking in the Chinese market context. It expands existing knowledge by considering the influence of performance aspiration on this relationship, offering practical implications for firms seeking to enhance corporate performance through strategic management of environmental responsibilities.
Details