Search results

1 – 7 of 7
Article
Publication date: 17 September 2024

Bingzi Jin, Xiaojie Xu and Yun Zhang

Predicting commodity futures trading volumes represents an important matter to policymakers and a wide spectrum of market participants. The purpose of this study is to concentrate…

Abstract

Purpose

Predicting commodity futures trading volumes represents an important matter to policymakers and a wide spectrum of market participants. The purpose of this study is to concentrate on the energy sector and explore the trading volume prediction issue for the thermal coal futures traded in Zhengzhou Commodity Exchange in China with daily data spanning January 2016–December 2020.

Design/methodology/approach

The nonlinear autoregressive neural network is adopted for this purpose and prediction performance is examined based upon a variety of settings over algorithms for model estimations, numbers of hidden neurons and delays and ratios for splitting the trading volume series into training, validation and testing phases.

Findings

A relatively simple model setting is arrived at that leads to predictions of good accuracy and stabilities and maintains small prediction errors up to the 99.273th quantile of the observed trading volume.

Originality/value

The results could, on one hand, serve as standalone technical trading volume predictions. They could, on the other hand, be combined with different (fundamental) prediction results for forming perspectives of trading trends and carrying out policy analysis.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 6 June 2024

Bingzi Jin and Xiaojie Xu

The purpose of this study is to make property price forecasts for the Chinese housing market that has grown rapidly in the last 10 years, which is an important concern for both…

Abstract

Purpose

The purpose of this study is to make property price forecasts for the Chinese housing market that has grown rapidly in the last 10 years, which is an important concern for both government and investors.

Design/methodology/approach

This study examines Gaussian process regressions with different kernels and basis functions for monthly pre-owned housing price index estimates for ten major Chinese cities from March 2012 to May 2020. The authors do this by using Bayesian optimizations and cross-validation.

Findings

The ten price indices from June 2019 to May 2020 are accurately predicted out-of-sample by the established models, which have relative root mean square errors ranging from 0.0458% to 0.3035% and correlation coefficients ranging from 93.9160% to 99.9653%.

Originality/value

The results might be applied separately or in conjunction with other forecasts to develop hypotheses regarding the patterns in the pre-owned residential real estate price index and conduct further policy research.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 24 May 2024

Bingzi Jin and Xiaojie Xu

Agriculture commodity price forecasts have long been important for a variety of market players. The study we conducted aims to address this difficulty by examining the weekly…

Abstract

Purpose

Agriculture commodity price forecasts have long been important for a variety of market players. The study we conducted aims to address this difficulty by examining the weekly wholesale price index of green grams in the Chinese market. The index covers a ten-year period, from January 1, 2010, to January 3, 2020, and has significant economic implications.

Design/methodology/approach

In order to address the nonlinear patterns present in the price time series, we investigate the nonlinear auto-regressive neural network as the forecast model. This modeling technique is able to combine a variety of basic nonlinear functions to approximate more complex nonlinear characteristics. Specifically, we examine prediction performance that corresponds to several configurations across data splitting ratios, hidden neuron and delay counts, and model estimation approaches.

Findings

Our model turns out to be rather simple and yields forecasts with good stability and accuracy. Relative root mean square errors throughout training, validation and testing are specifically 4.34, 4.71 and 3.98%, respectively. The results of benchmark research show that the neural network produces statistically considerably better performance when compared to other machine learning models and classic time-series econometric methods.

Originality/value

Utilizing our findings as independent technical price forecasts would be one use. Alternatively, policy research and fresh insights into price patterns might be achieved by combining them with other (basic) prediction outputs.

Details

Asian Journal of Economics and Banking, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2615-9821

Keywords

Article
Publication date: 3 November 2023

Xiaojie Xu and Yun Zhang

The Chinese housing market has gone through rapid growth during the past decade, and house price forecasting has evolved to be a significant issue that draws enormous attention…

74

Abstract

Purpose

The Chinese housing market has gone through rapid growth during the past decade, and house price forecasting has evolved to be a significant issue that draws enormous attention from investors, policy makers and researchers. This study investigates neural networks for composite property price index forecasting from ten major Chinese cities for the period of July 2005–April 2021.

Design/methodology/approach

The goal is to build simple and accurate neural network models that contribute to pure technical forecasts of composite property prices. To facilitate the analysis, the authors consider different model settings across algorithms, delays, hidden neurons and data spitting ratios.

Findings

The authors arrive at a pretty simple neural network with six delays and three hidden neurons, which generates rather stable performance of average relative root mean square errors across the ten cities below 1% for the training, validation and testing phases.

Originality/value

Results here could be utilized on a standalone basis or combined with fundamental forecasts to help form perspectives of composite property price trends and conduct policy analysis.

Details

Property Management, vol. 42 no. 3
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 18 December 2023

Xiaojie Xu and Yun Zhang

This study aims to investigate dynamic relations among office property price indices of 10 major cities in China for the years 2005–2021.

Abstract

Purpose

This study aims to investigate dynamic relations among office property price indices of 10 major cities in China for the years 2005–2021.

Design/methodology/approach

Using monthly data, the authors adopt vector error correction modeling and the directed acyclic graph for the characterization of contemporaneous causality among the 10 indices.

Findings

The PC algorithm identifies the causal pattern, and the linear non-Gaussian acyclic model algorithm further determines the causal path from which we perform innovation accounting analysis. Sophisticated price dynamics are found in price adjustment processes following price shocks, which are generally dominated by the top tier of cities.

Originality/value

This suggests that policies on office property prices, in the long run, might need to be planned with particular attention paid to the top tier of cities.

Article
Publication date: 2 April 2024

Meiting Ma, Xiaojie Wu and Xiuqiong Wang

There is consensus among scholars on how political institutional imprinting interprets the unique management and practice phenomenon of Chinese enterprises. However, little…

Abstract

Purpose

There is consensus among scholars on how political institutional imprinting interprets the unique management and practice phenomenon of Chinese enterprises. However, little scholarly attention has been given to the different political institutional imprints that shape firms’ internationalization. Therefore, this study aims to investigate how communist and market logic political institutional imprintings influence firms’ initial ownership strategies in outward foreign direct investment.

Design/methodology/approach

Based on the propensity score matching difference in difference method and a sample of 464 foreign investments from 2009 to 2020 for 310 Chinese private firms.

Findings

The results show that private firms with market logic political institutional imprintings tend to adopt higher ownership and vice versa. As institutional differences increase, private firms with market logic imprintings are more risk-taking and adopt higher ownership, whereas private firms with communist imprintings are more conservative and choose lower ownership. When diplomatic relations are friendlier, private firms with market logic imprintings prefer higher ownership to grasp business opportunities and vice versa.

Originality/value

This study not only identifies the net effect of political institutional imprinting on private firms’ initial ownership strategy but also investigates the different moderating effects of current institutional forces to respond to the call for research on bringing history back into international business research and the fit between imprinting and the environment.

Details

Chinese Management Studies, vol. 18 no. 6
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 16 June 2023

Xin Feng, Xu Wang and Mengxia Qi

In the era of the digital economy, higher demands are placed on versatile talents, and the cultivation of students with innovative and entrepreneurial abilities has become an…

Abstract

Purpose

In the era of the digital economy, higher demands are placed on versatile talents, and the cultivation of students with innovative and entrepreneurial abilities has become an important issue for the further development of higher education, thus leading to extensive and in-depth research by many scholars. The study summarizes the characteristics and patterns of dual-innovation education at different stages of development, hoping to provide a systematic model for the development of dual-innovation education in China and make up for the shortcomings.

Design/methodology/approach

This paper uses Citespace software to visualize and analyze the relevant literature in CNKI and Web of Science databases from a bibliometric perspective, focusing on quantitative analysis in terms of article trends, topic clustering, keyword co-linear networks and topic time evolution, etc., to summarize and sort out the development of innovation and entrepreneurship education research at home and abroad.

Findings

The study found that the external characteristics of the literature published in the field of bi-innovation education in China and abroad are slightly different, mainly in that foreign publishers are more closely connected and have formed a more stable ecosystem. In terms of research hotspots, China is still in a critical period of reforming its curriculum and teaching model, and research on the integration of specialization and creative education is in full swing, while foreign countries focus more on the cultivation of students' entrepreneurial awareness and the enhancement of individual effectiveness. In terms of cutting-edge analysis, the main research directions in China are “creative education”, “new engineering”, “integration of industry and education” and “rural revitalization”.

Originality/value

Innovation and entrepreneurship education in China is still in its infancy, and most of the studies lack an overall overview and comparison of foreign studies. Based on the econometric analysis of domestic and foreign literature, this paper proposes a path for domestic innovation and entrepreneurship education reform that can make China's future education reform more effective.

1 – 7 of 7