Search results

1 – 10 of over 8000
Article
Publication date: 20 November 2023

Keqing Li, Xiaojia Wang, Changyong Liang and Wenxing Lu

The elderly service industry is emerging in China. The Chinese government introduced a series of policies to guide elderly service enterprises to improve their service quality…

143

Abstract

Purpose

The elderly service industry is emerging in China. The Chinese government introduced a series of policies to guide elderly service enterprises to improve their service quality. This study explores novel differentiated subsidy strategies that not only promote the improvement of service quality in elderly service enterprises but also alleviate the financial burden on the government.

Design/methodology/approach

Evolutionary game and Hotelling models are employed to investigate this issue. First, a Hotelling model that considers consumer word-of-mouth preferences is established. Subsequently, an evolutionary game model between local governments and enterprises is constructed, and the evolutionary stable strategies of both parties are analyzed. Finally, simulation experiments are conducted.

Findings

The findings indicate that local government decisions have a significant influence on the behavior of elderly service enterprises. Increasing the proportion of local governments opting for subsidy strategies helps incentivize elderly service enterprises to improve their service quality. Furthermore, providing differentiated subsidies based on the preferences of the customer base of elderly service enterprises can encourage service quality improvement while reducing government expenditure. The findings offer valuable insights into the design of government subsidy policies.

Originality/value

Compared with previous research, this study examines the role of consumer preferences in a differentiated subsidy policy. This enriches the authors’ understanding of the field by incorporating neglected aspects of consumer preferences in the context of the emerging elderly service industry.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 September 2024

Zhipeng Liang, Chunju Zhao, Huawei Zhou, Yihong Zhou, Quan Liu, Tao Fang and Fang Wang

The spatial–temporal conflicts in the construction process of concrete arch dams are related to the construction quality and duration, especially for pouring blocks with a…

Abstract

Purpose

The spatial–temporal conflicts in the construction process of concrete arch dams are related to the construction quality and duration, especially for pouring blocks with a continuous high-strength and high-density construction process. Furthermore, the complicated construction technology and limited space resources aggravate the spatial–temporal conflicts in the process of space resource allocation and utilization, directly affecting the pouring quality and progress of concrete. To promote the high-strength, quality-preserving and rapid construction of dams and to clarify the explosion moment and influence degree of the spatial–temporal conflicts of construction machinery during the pouring process, a quantification method and algorithm for a “Conflict Bubble” (CB) between construction machines is proposed based on the “Time–Space Microelement” (TSM).

Design/methodology/approach

First, the concept of a CB is proposed, which is defined as the spatial overlap of different entities in the movement process. The subsidiary space of the entity is divided into three layered spaces: the physical space, safe space and efficiency space from the inside to the outside. Second, the processes of “creation,” “transition” and “disappearance” of the CB at different levels with the movement of the entity are defined as the evolution of the spatial–temporal state of the entity. The mapping relationship between the spatial variation and the running time of the layered space during the movement process is defined as “Time–Space” (TS), which is intended to be processed by a microelement.

Findings

The quantification method and algorithm of the CB between construction machinery are proposed based on the TSM, which realizes the quantification of the physical collision accident rate, security risk rate and efficiency loss rate of the construction machinery at any time point or time period. The risk rate of spatial–temporal conflicts in the construction process was calculated, and the outbreak condition of spatial–temporal conflict in the pouring process was simulated and rehearsed. The quantitative calculation results show that the physical collision accident rate, security risk rate and efficiency loss rate of construction machinery at any time point or time period can be quantified.

Originality/value

This study provides theoretical support for the quantitative evaluation and analysis of the spatial–temporal conflict risk in the pouring construction process. It also serves as a reference for the rational organization and scientific decision-making for pouring blocks and provides new ideas and methods for the safe and efficient construction and the scientific and refined management of dams.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 August 2024

Jiawei Liu, Zi Xiong, Yi Jiang, Yongqiang Ma, Wei Lu, Yong Huang and Qikai Cheng

Fine-tuning pre-trained language models (PLMs), e.g. SciBERT, generally require large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in…

58

Abstract

Purpose

Fine-tuning pre-trained language models (PLMs), e.g. SciBERT, generally require large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in the scientific domain. However, obtaining fine-tuning data for scientific NLP tasks is still challenging and expensive. In this paper, the authors propose the mix prompt tuning (MPT), which is a semi-supervised method aiming to alleviate the dependence on annotated data and improve the performance of multi-granularity academic function recognition tasks.

Design/methodology/approach

Specifically, the proposed method provides multi-perspective representations by combining manually designed prompt templates with automatically learned continuous prompt templates to help the given academic function recognition task take full advantage of knowledge in PLMs. Based on these prompt templates and the fine-tuned PLM, a large number of pseudo labels are assigned to the unlabelled examples. Finally, the authors further fine-tune the PLM using the pseudo training set. The authors evaluate the method on three academic function recognition tasks of different granularity including the citation function, the abstract sentence function and the keyword function, with data sets from the computer science domain and the biomedical domain.

Findings

Extensive experiments demonstrate the effectiveness of the method and statistically significant improvements against strong baselines. In particular, it achieves an average increase of 5% in Macro-F1 score compared with fine-tuning, and 6% in Macro-F1 score compared with other semi-supervised methods under low-resource settings.

Originality/value

In addition, MPT is a general method that can be easily applied to other low-resource scientific classification tasks.

Details

The Electronic Library , vol. 42 no. 6
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 14 November 2024

Peng Wang, Luyu Liu, Fanghao Nan and RenQuan Dong

Assisted training using upper limb rehabilitation robots is beneficial for flaccid paralysis patients in recovering their functional abilities. In the assisted training mode, the…

Abstract

Purpose

Assisted training using upper limb rehabilitation robots is beneficial for flaccid paralysis patients in recovering their functional abilities. In the assisted training mode, the patient’s motor ability is limited by factors such as limb muscle tension, and it is prone for the rehabilitation robot to deviate from the prescribed training trajectory. A sliding mode control method based on a fixed time observer is proposed to address the problem of delayed trajectory tracking response of upper limb rehabilitation robots caused by external disturbances such as patient limbs.

Design/methodology/approach

First, aiming at the problem of estimating and compensating for external disturbances in the upper limb rehabilitation robot system, a fixed time observer was designed based on the robot’s dynamic model. Second, the composite sliding mode reaching law combining the smooth function and the power-exponential function is proposed to shorten the convergence time of system states in the startup phase, thereby reducing chattering in the control process and realizing the real-time tracking of the training trajectory by the control system.

Findings

The proposed method provides a solution for the trajectory tracking speed of upper limb rehabilitation robot controllers. In the circular trajectory tracking control, compared to the sliding-mode control method combined with the variable-exponential composite reaching law based on the fixed-time observer, the method in this paper reduces the time for the system state to reach the sliding surface by 0.89 s and improves the response speed by 0.66%.

Originality/value

The composite sliding mode approach law based on smooth function and power exponent function can reduce the time it takes for the system state to reach and remain on the sliding surface and improve the trajectory tracking speed of upper limb rehabilitation robots. This controller improves the accuracy of trajectory control and ensures the robustness of auxiliary rehabilitation training.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 November 2024

Ye Li, Chengyun Wang and Junjuan Liu

In this paper, a new grey Cosine New Structured Grey Model (CNSGM(1,N)) prediction power model is constructed for the small-sample modeling and prediction problem with complex…

Abstract

Purpose

In this paper, a new grey Cosine New Structured Grey Model (CNSGM(1,N)) prediction power model is constructed for the small-sample modeling and prediction problem with complex nonlinearity and insignificant volatility.

Design/methodology/approach

Firstly, the weight of some relevant factors is determined by the grey comprehensive correlation degree, and the data are preprocessed. Secondly, according to the principle of “new information priority” and the volatility characteristics of the sequence growth rate, the ideas of damping accumulation power index and trigonometric function are integrated into the New Structured Grey Model (NSGM(1,N)) model. Finally, the non-structural parameters are optimized by the genetic algorithm, and the structural parameters are calculated by the least squares method, so a new CNSGM(1,N) predictive power model is constructed.

Findings

Under the principle of “new information priority,” through the combination with the genetic algorithm, the traditional first-order accumulation generation is transformed into damping accumulation generation, and the trigonometric function with the idea of integer is introduced to further simulate the phenomenon that the volatility is not obvious in the real system. It is applied to the simulation and prediction of China’s carbon dioxide emissions, and compared with other comparison models; it is found that the model has a better simulation effect and excellent performance.

Originality/value

The main contribution of this paper is to propose a new grey CNSGM(1,N) prediction power model, which can not only be applied to complex nonlinear cases but also reflect the differences between the old and new data and can reflect the volatility characteristics of the characteristic behavior sequence of the system.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Book part
Publication date: 2 September 2024

Vasilii Erokhin and Tianming Gao

Sustainable development is inseparable from rational and responsible use of resources and promotion of green entrepreneurship. The contemporary green development agenda…

Abstract

Sustainable development is inseparable from rational and responsible use of resources and promotion of green entrepreneurship. The contemporary green development agenda encompasses climate, economic, technical, social, cultural, and political dimensions. International efforts to greening the global development are conducted by the major economies, including China as the world’s largest consumer of energy and the biggest emitter of greenhouse gases. China is aware of its environmental problems, as well as of its part of the overall responsibility for the accomplishment of the sustainable development goals. By means of the decarbonization efforts, the latter are integrated both into the national development agenda (the concept of ecological civilization) and China’s international initiatives (the greening narrative within the Belt and Road Initiative). Over the past decade, China has made a breakthrough on the way to promoting green entrepreneurship and greening of its development (better quality of air and water, renewable energy, electric vehicles, and organic farming). On the other hand, emissions remain high, agricultural land loses productivity, and freshwater resources degrade due to climate change. In conventional industries (oil, coal mining, and electric and thermal energy), decarbonization faces an array of impediments. In this chapter, the authors summarize fundamental provisions of China’s approach to building an ecological civilization and measures to reduce emissions and achieve the carbon neutrality status within the nearest decades. The analysis of obstacles to the decarbonization of the economy and possible prospects for the development of green entrepreneurship summarizes China’s practices for possible use in other countries.

Details

Emerging Patterns and Behaviors in a Green Resilient Economy
Type: Book
ISBN: 978-1-83549-781-4

Keywords

Article
Publication date: 11 June 2024

Xing Zhang, Yongtao Cai, Fangyu Liu and Fuli Zhou

This paper aims to propose a solution for dissolving the “privacy paradox” in social networks, and explore the feasibility of adopting a synergistic mechanism of “deep-learning…

Abstract

Purpose

This paper aims to propose a solution for dissolving the “privacy paradox” in social networks, and explore the feasibility of adopting a synergistic mechanism of “deep-learning algorithms” and “differential privacy algorithms” to dissolve this issue.

Design/methodology/approach

To validate our viewpoint, this study constructs a game model with two algorithms as the core strategies.

Findings

The “deep-learning algorithms” offer a “profit guarantee” to both network users and operators. On the other hand, the “differential privacy algorithms” provide a “security guarantee” to both network users and operators. By combining these two approaches, the synergistic mechanism achieves a balance between “privacy security” and “data value”.

Practical implications

The findings of this paper suggest that algorithm practitioners should accelerate the innovation of algorithmic mechanisms, network operators should take responsibility for users’ privacy protection, and users should develop a correct understanding of privacy. This will provide a feasible approach to achieve the balance between “privacy security” and “data value”.

Originality/value

These findings offer some insights into users’ privacy protection and personal data sharing.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 March 2023

Jiaqi Yin, Shaomin Wu and Virginia Spiegler

This paper models the deterioration process of a multi-component system. Each deterioration process is modelled by the Wiener process. The purposes of this paper are to address…

Abstract

Purpose

This paper models the deterioration process of a multi-component system. Each deterioration process is modelled by the Wiener process. The purposes of this paper are to address these issues and consider the cost process based on the multi-component system.

Design/methodology/approach

Condition-based Maintenance is a method for reducing the probability of system failures as well as the operating cost. Nowadays, a system is composed of multiple components. If the deteriorating process of each component can be monitored and then modelled by a stochastic process, the deteriorating process of the system is a stochastic process. The cost of repairing failures of the components in the system forms a stochastic process as well and is known as a cost process.

Findings

When a linear combination of the processes, which can be the deterioration processes and the cost processes, exceeds a pre-specified threshold, a replacement policy will be carried out to preventively maintain the system.

Originality/value

Under this setting, this paper investigates maintenance policies based on the deterioration process and the cost process. Numerical examples are given to illustrate the optimisation process.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 February 2023

Kai Liu, Yuming Liu, Yuanyuan Kou and Xiaoxu Yang

The mega railway infrastructure projects are faced with complex environments and multi-level management challenges. Thus, the mega railway infrastructure project management system…

Abstract

Purpose

The mega railway infrastructure projects are faced with complex environments and multi-level management challenges. Thus, the mega railway infrastructure project management system not only needs to focus on its composition, but also needs to consider changes and impacts of internal and external environment.

Design/methodology/approach

This study attempts to introduce the concept of dissipative structure from the perspective of complexity theory and constructs a positive entropy and negentropy flow index system for mega railway infrastructure project management system in order to analyze the factors of management system more deeply. The Brusselator model is used to construct the structure of the mega railway infrastructure project management system, and the entropy method is used to calculate the positive entropy and negentropy values to verify whether the management system is a dissipative structure.

Findings

A plateau railway project in China was used as an example for an empirical study, not only its own characteristics are analyzed, but also the role of constraints and facilitation of the internal and external environment. Based on the research results, several effective suggestions are put forward to improve the stability and work efficiency of mega railway infrastructure project management system.

Originality/value

This study demonstrates that mega railway infrastructure project management system has the characteristics of dissipative structure. It can provide theoretical support for the development of mega railway infrastructure project management system from disorderly state to orderly state.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 24 September 2024

Penghai Deng, Quansheng Liu and Haifeng Lu

The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil…

Abstract

Purpose

The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil rock mixtures (SRM), in which the rocks within the SRM model have shape randomness, size randomness and spatial distribution randomness.

Design/methodology/approach

Based on the modeling method of heterogeneous rocks, the SRM numerical model can be built and by adjusting the boundary between soil and rock, an SRM numerical model with any rock content can be obtained. The reliability and robustness of the new modeling method can be verified by uniaxial compression simulation. In addition, this paper investigates the effects of rock topology, rock content, slope height and slope inclination on the stability of SRM slopes.

Findings

Investigations of the influences of rock content, slope height and slope inclination of SRM slopes showed that the slope height had little effect on the failure mode. The influences of rock content and slope inclination on the slope failure mode were significant. With increasing rock content and slope dip angle, SRM slopes gradually transitioned from a single shear failure mode to a multi-shear fracture failure mode, and shear fractures showed irregular and bifurcated characteristics in which the cut-off values of rock content and slope inclination were 20% and 80°, respectively.

Originality/value

This paper proposed a new modeling method for SRMs based on FDEM, with rocks having random shapes, sizes and spatial distributions.

1 – 10 of over 8000