Siying Zhu and Cheng-Hsien Hsieh
Maritime transportation plays an important role in facilitating both the global and regional merchandise trade, where accurate trend prediction is crucial in assisting…
Abstract
Purpose
Maritime transportation plays an important role in facilitating both the global and regional merchandise trade, where accurate trend prediction is crucial in assisting decision-making in the industry. This paper aims to conduct a macro-level study to predict world vessel supply and demand.
Design/methodology/approach
The automatic autoregressive integrated moving average (ARIMA) is used for the univariate vessel supply and demand time-series forecasting based on the data records from 1980 to 2021.
Findings
For the future projection of the demand side, the predicted outcomes for total vessel demand and world dry cargo vessel demand until 2030 indicate upward trends. For the supply side, the predominant upward trends for world total vessel supply, oil tanker vessel supply, container vessel supply and other types of vessel supply are captured. The world bulk carrier vessel supply prediction results indicate an initial upward trend, followed by a slight decline, while the forecasted world general cargo vessel supply values remain relatively stable. By comparing the predicted percentage change rates, there is a gradual convergence between demand and supply change rates in the near future. We also find that the impact of the COVID-19 pandemic on the time-series prediction results is not statistically significant.
Originality/value
The results can provide policy implications in strategic planning and operation to various stakeholders in the shipping industry for vessel building, scrapping and deployment.
Details
Keywords
Junfu Xiao, Siying Chen, Zhixiong Tan, Yanyu Chen, Jiayi Wang and Han Jingwei
Given the inevitable transition to renewable resource utilization and the urgent need to reduce carbon emissions, this study conducted quasi natural experiments to assess the…
Abstract
Purpose
Given the inevitable transition to renewable resource utilization and the urgent need to reduce carbon emissions, this study conducted quasi natural experiments to assess the impact of renewable resource utilization on carbon emissions based on the national “urban mining” demonstration bases (NUMDB).
Design/methodology/approach
This study uses panel data from 275 prefecture-level cities in China from 2006 to 2019. The paper selects NUMDB as the proxy variable and conducts a quasi-natural experiment using a multi-period differences-in-differences model. We examine the impact of NUMDB on reducing carbon emissions, and then deeply explore its mechanism and spatial spillover effect.
Findings
This study found that: (1) the construction of NUMDB can significantly decrease the carbon emission in the host cities; (2) NUMDB’s construction has more significantly reduced the carbon emission in regions with higher levels of circular economy development, green technology innovation, regional environmental pollution, digital economy development and financial development; (3) by means of green technology innovation, optimized energy structure, and high-quality talent aggregation, NUMDB reduces urban carbon emissions; (4) NUMDB construction positively affects the carbon reduction efficiency of neighboring regions.
Research limitations/implications
We propose corresponding policy suggestions to further promote the carbon emission reduction effect of NUMDB and develop the renewable resources industry in China based on the research findings.
Practical implications
The contributions of this paper are as follows. Our study contributes to expanding the research scope on the environmental impact of the renewable resource industry, as there are few quantitative studies in this area.
Social implications
We further consider the spatial heterogeneity of policies and analyze the carbon reduction effect of the NUMDB from the city level, which is beneficial to exploring more targeted and operable carbon reduction paths.
Originality/value
This study on identifying the causal relationship between renewable resource utilization and carbon emission reduction helps to explore the sustainable development path of renewable resource more comprehensively. Meanwhile, this paper provides a reference for other countries to improve the utilization of renewable resource and effectively reduce carbon emissions.
Details
Keywords
Asis Kumar Sahu, Byomakesh Debata and Saumya Ranjan Dash
This study aims to examine the impact of manager sentiment on the firm performance (FP) of Indian-listed nonfinancial firms. Further, it endeavors to investigate the moderating…
Abstract
Purpose
This study aims to examine the impact of manager sentiment on the firm performance (FP) of Indian-listed nonfinancial firms. Further, it endeavors to investigate the moderating role of economic policy uncertainty (EPU) and environment, social and governance (ESG) transparency in this relationship.
Design/methodology/approach
A noble manager sentiment is introduced using FinBERT, a bidirectional encoder representation from a transformers (BERT)-type large language model. Using this deep learning-based natural language processing approach implemented through a Python-generated algorithm, this study constructs a manager sentiment for each firm and year based on the management discussions and analysis (MD&A) report. This research uses the system GMM to examine how manager sentiment affects FP.
Findings
The empirical results suggest that managers’ optimistic outlook in MD&A corporate disclosure sections tends to present higher performance. This positive association remains consistent after several robustness checks – using propensity score matching and instrumental variable approach to address further endogeneity, using alternative proxies of manager sentiment and FP and conducting subsample analysis based on financial constraints. Furthermore, the authors observe that the relationship is more pronounced for ESG-disclosed firms and during the low EPU.
Practical implications
The results demonstrate that the manager sentiment strongly predicts FP. Thus, this study may provide valuable insight for academics, practitioners, investors, corporates and policymakers.
Originality/value
To the best of the authors’ knowledge, this is the first study to predict FP by using FinBERT-based managerial sentiment, particularly in an emerging market context.