Search results
1 – 2 of 2Matthew Peebles, Shen Hin Lim, Mike Duke, Benjamin Mcguinness and Chi Kit Au
Time of flight (ToF) imaging is a promising emerging technology for the purposes of crop identification. This paper aim to presents localization system for identifying and…
Abstract
Purpose
Time of flight (ToF) imaging is a promising emerging technology for the purposes of crop identification. This paper aim to presents localization system for identifying and localizing asparagus in the field based on point clouds from ToF imaging. Since the semantics are not included in the point cloud, it contains the geometric information of other objects such as stones and weeds other than asparagus spears. An approach is required for extracting the spear information so that a robotic system can be used for harvesting.
Design/methodology/approach
A real-time convolutional neural network (CNN)-based method is used for filtering the point cloud generated by a ToF camera, allowing subsequent processing methods to operate over smaller and more information-dense data sets, resulting in reduced processing time. The segmented point cloud can then be split into clusters of points representing each individual spear. Geometric filters are developed to eliminate the non-asparagus points in each cluster so that each spear can be modelled and localized. The spear information can then be used for harvesting decisions.
Findings
The localization system is integrated into a robotic harvesting prototype system. Several field trials have been conducted with satisfactory performance. The identification of a spear from the point cloud is the key to successful localization. Segmentation and clustering points into individual spears are two major failures for future improvements.
Originality/value
Most crop localizations in agricultural robotic applications using ToF imaging technology are implemented in a very controlled environment, such as a greenhouse. The target crop and the robotic system are stationary during the localization process. The novel proposed method for asparagus localization has been tested in outdoor farms and integrated with a robotic harvesting platform. Asparagus detection and localization are achieved in real time on a continuously moving robotic platform in a cluttered and unstructured environment.
Details
Keywords
The purpose of this paper is to present a method that addresses the data sparsity problem in points of interest (POI) recommendation by introducing spatiotemporal context features…
Abstract
Purpose
The purpose of this paper is to present a method that addresses the data sparsity problem in points of interest (POI) recommendation by introducing spatiotemporal context features based on location-based social network (LBSN) data. The objective is to improve the accuracy and effectiveness of POI recommendations by considering both spatial and temporal aspects.
Design/methodology/approach
To achieve this, the paper introduces a model that integrates the spatiotemporal context of POI records and spatiotemporal transition learning. The model uses graph convolutional embedding to embed spatiotemporal context information into feature vectors. Additionally, a recurrent neural network is used to represent the transitions of spatiotemporal context, effectively capturing the user’s spatiotemporal context and its changing trends. The proposed method combines long-term user preferences modeling with spatiotemporal context modeling to achieve POI recommendations based on a joint representation and transition of spatiotemporal context.
Findings
Experimental results demonstrate that the proposed method outperforms existing methods. By incorporating spatiotemporal context features, the approach addresses the issue of incomplete modeling of spatiotemporal context features in POI recommendations. This leads to improved recommendation accuracy and alleviation of the data sparsity problem.
Practical implications
The research has practical implications for enhancing the recommendation systems used in various location-based applications. By incorporating spatiotemporal context, the proposed method can provide more relevant and personalized recommendations, improving the user experience and satisfaction.
Originality/value
The paper’s contribution lies in the incorporation of spatiotemporal context features into POI records, considering the joint representation and transition of spatiotemporal context. This novel approach fills the gap left by existing methods that typically separate spatial and temporal modeling. The research provides valuable insights into improving the effectiveness of POI recommendation systems by leveraging spatiotemporal information.
Details