Search results

1 – 10 of 31
Article
Publication date: 4 June 2024

Ahmed Zeeshan, Zaheer Asghar and Amad ur Rehaman

The present work is devoted to investigating the sensitivity analysis of the electroosmotic peristaltic motion of non-Newtonian Casson fluid with the effect of the chemical…

Abstract

Purpose

The present work is devoted to investigating the sensitivity analysis of the electroosmotic peristaltic motion of non-Newtonian Casson fluid with the effect of the chemical reaction and magnetohydrodynamics through the porous medium. The main focus is on flow efficiency quantities such as pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall. This initiative is to bridge the existing gap in the available literature.

Design/methodology/approach

The governing equations of the problem are mathematically formulated and subsequently simplified for sensitivity analysis under the assumptions of a long wavelength and a small Reynolds number. The simplified equations take the form of coupled nonlinear differential equations, which are solved using the built-in Matlab routine bvp4c. The response surface methodology and artificial neural networks are used to develop the empirical model for pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall.

Findings

The empirical model demonstrates an excellent fit with a coefficient of determination reaching 100% for responses, frictional forces on the upper wall and frictional forces on the lower wall and 99.99% for response, for pressure rise per wavelength. It is revealed through the sensitivity analysis that pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall are most sensitive to the permeability parameter at all levels.

Originality/value

The objective of this study is to use artificial neural networks simulation and analyze the sensitivity of electroosmotic peristaltic motion of non-Newtonian fluid with the effect of chemical reaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 September 2024

Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar and Taseer Muhammad

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a…

36

Abstract

Purpose

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.

Design/methodology/approach

This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.

Findings

To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.

Originality/value

First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 August 2024

Gopi V and Vijaya Kumar Avula Golla

This paper aims to explore the numerical study of the steady two-dimensional MHD hybrid Cu-Fe3O4/EG nanofluid flows over an inclined porous plate with an inclined magnetic effect…

Abstract

Purpose

This paper aims to explore the numerical study of the steady two-dimensional MHD hybrid Cu-Fe3O4/EG nanofluid flows over an inclined porous plate with an inclined magnetic effect. Iron oxide (Fe3O4) and copper (Cu) are hybrid nanoparticles, with ethylene glycol as the base fluid. The effects of several physical characteristics, such as the inclination angle, magnetic parameter, thermal radiation, viscous propagation, heat absorption and convective heat transfer, are revealed by this exploration.

Design/methodology/approach

Temperature and velocity descriptions, along with the skin friction coefficient and Nusselt number, are studied to see how they change depending on the parameters. Using compatible similarity transformations, the controlling equations, including those describing the momentum and energy descriptions, are turned into a set of non-linear ordinary differential equations. The streamlined mathematical model is then solved numerically by using the shooting approach and the Runge–Kutta method up to the fourth order. The numerical findings of skin friction and Nusselt number are compared and discussed with prior published data by Nur Syahirah Wahid.

Findings

The graphical representation of the velocity and temperature profiles within the frontier is exhibited and discussed. The various output values related to skin friction and the Nusselt number are shown in the table.

Originality/value

The new results are compared to past research and discovered to agree significantly with those authors’ published works.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 July 2024

Ilango M.S. and Lakshminarayana Pallavarapu

The purpose of this study is to examine the melting heat transfer of magnetohydrodynamics Casson nanofluid flow with viscous dissipation, radiation, and complete slip effects on a…

Abstract

Purpose

The purpose of this study is to examine the melting heat transfer of magnetohydrodynamics Casson nanofluid flow with viscous dissipation, radiation, and complete slip effects on a porous stretching sheet. Since, the study of melting heat transfer has mesmerized the attention of scientists and engineers in the sense of its enormous uses in industrial processes, solidification, casting, and technology.

Design/methodology/approach

Bejan number and entropy are analyzed. Exploration of irreversibility is modeled using the thermodynamics second law. There is a discussion on thermophoresis and Brownian diffusion along with first-order chemical reactions. Adequate transformations are introduced to convert the controlling partial differential equations to ordinary differential equations. The three-phase Lobatto solvers (bvp5c) are used to obtain numerical solutions of the transmitted equations.

Findings

The effects of various factors on temperature, velocity, concentration, Bejan number and entropy rate are shown graphically. The velocity field is enhanced by increasing the melting heat parameter, and it declines for growing magnetic parameters. Temperature is decreased for increasing parametric values of melting heat, porous and Casson parameters. A 7% decrease in the Sherwood distribution is seen when we increase the Brownian motion parameter from 0.1 to 0.2. Similarly, an 11% decrement is found in the Nusselt distribution for increasing the Brinkman number from 0.5 to 1.

Originality/value

Entropy and Bejan number experience dual tendencies whenever the melting heat parameter increases. Nusselt number and skin friction experience the opposite behavior for the increasing values of melting parameter. Sherwood number decreases for the increasing values of melting parameter. The velocity profile is directly related to the melting parameter and inversely related to porous and magnetic parameters. Thermophoresis and Brinkman parameters boost the temperature profile and it is controlled by melting and porous parameters. Some notable fields where the present study is used inevitably are silicon wafering, geothermal energy recovery and semiconductor manufacturing.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 November 2024

Aziz Ullah Awan, Muhammad Hasnain Shahzad, Sohail Nadeem, Haneen Hamam, N. Ameer Ahammad and Aleeza Arshad

The presence and progression of stenosis disturb the normal circulation of blood through an artery and cause serious consequences. The proposed investigation is aimed to assess…

Abstract

Purpose

The presence and progression of stenosis disturb the normal circulation of blood through an artery and cause serious consequences. The proposed investigation is aimed to assess non-Newtonian characteristics of blood in an elliptical artery having stenosis. The blood is taken as Sutterby fluid flowing via a multi-stenosed elliptical cross-section artery.

Design/methodology/approach

The analytical solution of a mathematical model representing the considered problem is extracted in a non-dimensional form by utilizing the perturbation technique under the mild stenosis assumptions.

Findings

The graphical nature of these results is examined and discussed comprehensively for different physical parameters. The height and shape of stenosis are noted to have prominent effects on flow velocity. The wall shear stress and flow velocity attained high values in the stenotic portion of the artery. The non-uniform stenosis is observed to create higher resistance to the flow than the uniform stenosis. Further, a high disorder is noticed in the constricted region of the artery by streamlines analysis.

Research limitations/implications

The manuscript completely comprehends the blood’s non-Newtonian flow in the arteries of elliptical shape having multiple stenoses. The present study is about the properties of non-Newtonian blood flow through an elliptical artery with many stenoses. The Sutterby fluid model is used to describe the blood’s non-Newtonian nature. By utilizing presumptions of mild stenosis, the mathematical model’s non-linearity is decreased, and the perturbation method is applied to generate the resulting equations.

Practical implications

The presence of stenosis can significantly impact the circulation of blood flow. When an artery becomes narrowed, it can create a constriction or obstruction in the flow path of blood, which can lead to several important fluid dynamics phenomena, i.e. increased velocity, shear stress, pressure drop, etc. The presence of stenosis can cause various damages and complications in the affected blood arteries and surrounding tissues, resulting in heart attacks or diseases like atherosclerosis.

Originality/value

The work presented in the manuscript was not published earlier in any form.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 July 2024

Abdulaziz Alsenafi, Fares Alazemi and M. Nawaz

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and…

Abstract

Purpose

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and development of models. The thermal performance of sample fluids is compared to determine which types of combination of nanoparticles are the best for an optimized enhancement in thermal performance of fluids. This article aims to: (i) investigate the impact of nanoparticles on thermal performance; and (ii) implement the Galerkin finite element method (GFEM) to thermal problems.

Design/methodology/approach

The mathematical models are developed using novel non-Fourier heat flux theory, conservation laws of computational fluid dynamics (CFD) and no-slip thermal boundary conditions. The models are approximated using thermal boundary layer approximations, and transformed models are solved numerically using GFEM. A grid-sensitivity test is performed. The accuracy, correction and stability of solutions is ensured. The numerical method adopted for the calculations is validated with published data. Quantities of engineering interest, i.e. wall shear stress, wall mass flow rate and wall heat flux, are calculated and examined versus emerging rheological parameters and thermal relaxation time.

Findings

The thermal relaxation time measures the ability of a fluid to restore its original thermal state, called thermal equilibrium and therefore, simulations have shown that the thermal relaxation time associated with a mono nanofluid has the most substantial effect on the temperature of fluid, whereas a ternary nanofluid has the smallest thermal relaxation time. A ternary nanofluid has a wider thermal boundary thickness in comparison with base and di- and mono nanofluids. The wall heat flux (in the case of the ternary nanofluids) has the most significant value compared with the wall shear stresses for the mono and hybrid nanofluids. The wall heat and mass fluxes have the highest values for the case of non-Fourier heat and mass diffusion compared to the case of Fourier heat and mass transfer.

Originality/value

An extensive literature review reveals that no study has considered thermal and concentration memory effects on transport mechanisms in fluids of cross-rheological liquid using novel theory of heat and mass [presented by Cattaneo (Cattaneo, 1958) and Christov (Christov, 2009)] so far. Moreover, the finite element method for coupled and nonlinear CFD problems has not been implemented so far. To the best of the authors’ knowledge for the first time, the dynamics of wall heat flow rate and mass flow rate under simultaneous effects of thermal and solute relaxation times, Ohmic dissipation and first-order chemical reactions are studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2024

Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…

Abstract

Purpose

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.

Design/methodology/approach

Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.

Findings

Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.

Originality/value

The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 November 2024

Shahirah Abu Bakar, Ioan Pop and Norihan Md Arifin

This paper aims to explore dual solutions for the flow of a hybrid nanofluid over a permeable melting stretching/shrinking sheet with nanoparticle shape factor, second-order…

Abstract

Purpose

This paper aims to explore dual solutions for the flow of a hybrid nanofluid over a permeable melting stretching/shrinking sheet with nanoparticle shape factor, second-order velocity slip conditions and viscous dissipation. The hybrid nanofluid is formulated by dispersing alumina (Al2O3) and copper (Cu) nanoparticles into water (H2O).

Design/methodology/approach

The governing partial differential equations (PDEs) are first reduced to a system of ordinary differential equations (ODEs) using a mathematical method of similarity transformation technique. These ODEs are then numerically solved through MATLAB’s bvp4c solver.

Findings

Key parameters such as slip parameter, melting parameter, suction parameter, shrinking parameter and Eckert number are examined. The results reveal the existence of two distinct solutions (upper and lower branches) for the transformed ODEs when considering the shrinking parameter. Increasing value of Cu-volume fraction and the second-order velocity slip enhances boundary layer thicknesses, whereas the heat transfer rate diminishes with rising melting and suction parameters. These numerical results are illustrated through various figures and tables. Additionally, a stability analysis is performed and confirms the upper branch is stable and practical, while the lower branch is unstable.

Practical implications

The analysis of hybrid nanofluid flow over a shrinking surface has practical significance with applications in processes such as solar thermal management systems, automotive cooling systems, sedimentation, microelectronic cooling or centrifugal separation of particles. Both steady and unsteady hybrid nanofluid flows are relevant in these contexts.

Originality/value

While the study of hybrid nanofluid flow is well-documented, research focusing on the shrinking flow case with specific parameters in our study is still relatively scarce. This paper contributes to obtaining dual solutions specifically for the shrinking case, which has been less frequently addressed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 October 2024

Pinaki Ranjan Duari and Kalidas Das

The current work investigates an unsteady squeezed flow of hybrid-nanofluid between two parallel plates in occurrence with a uniform transverse magnetic field. Water is used as…

Abstract

Purpose

The current work investigates an unsteady squeezed flow of hybrid-nanofluid between two parallel plates in occurrence with a uniform transverse magnetic field. Water is used as base fluid mixed with Graphene Oxide (GO) and Copper (Cu) nanoparticles. The flow considered here is under slip boundary conditions.

Design/methodology/approach

The governing PDEs are transmuted into ODEs by applying an appropriate similarity transformation and then solved numerically using the 4th order R-K method with shooting technique. Graphical illustrations for velocity, temperature, entropy generation (NG), Bejan number (Be), streamline etc. are presented and discussed in detail from the physical point of view. The nature of the Nusselt number is also studied numerically through contour plots for different flow parameters.

Findings

There is no funding obtained for the research work.

Social implications

This kind of study may be used in various fields including polymer processing, lubrication apparatus, compression including hydrodynamical machines compression, food processing etc.

Originality/value

It is observed that very little investigation has yet been made about the movement of hybrid nanofluid between two analogous plates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 31